def extract_feature_from_file(pic_path):
    # 包含人脸检测和人脸识别
    # align_face(pic_path)
    images = facenet.load_data([pic_path], False, False, image_size)
    if images.shape[-1] != 3:
        return None
    feed_dict = {images_placeholder: images}
    face_feature = sess.run(embeddings, feed_dict=feed_dict)
    return face_feature
Esempio n. 2
0
def read_images(do_prewhiten=True):
    """Reads in the facial images of the 12 characters."""
    char_img_map = OrderedDict()
    for character in CHARACTER_ORDER:
        path = DATASET / character
        image_paths = sorted(path.glob('*.jpg'))
        images = facenet.load_data(image_paths, False, False, IMAGE_SIZE, do_prewhiten)
        char_img_map[character] = images

    return char_img_map
Esempio n. 3
0
 def get_embedding(self, img_path):
     start_time = time.time()
     images = facenet.load_data([img_path], False, False,
                                self._aligned_img_size)
     feed_dict = {
         self._images_placeholder: images,
         self._phase_train_placeholder: False
     }
     embeddings_arr = self._sess.run(self._embeddings, feed_dict=feed_dict)
     logging.warning('get_embedding time: {}s'.format(time.time() -
                                                      start_time))
     return embeddings_arr[0]
def get_embeddings(aligned_imgs_path, trained_model_path, tmp_dir, is_debug):
    assert (os.path.isdir(tmp_dir))
    embeddings_filename = EMBEDDINGS_FILE
    if is_debug:
        embeddings_filename += DEBUG_EXT
    embeddings_path = os.path.join(tmp_dir, embeddings_filename)
    if os.path.isfile(embeddings_path):
        with open(embeddings_path, 'rb') as f:
            return pickle.load(f)

    aligned_imgs_paths = get_img_paths(aligned_imgs_path)
    if is_debug:
        aligned_imgs_paths = aligned_imgs_paths[:DEBUG_COUNT]
    img_idxs = [get_filename_wo_ext(x) for x in aligned_imgs_paths]

    with tf.Graph().as_default():
        with tf.Session() as sess:
            facenet.load_model(trained_model_path)

            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            embedding_size = embeddings.get_shape()[1]
            nrof_images = len(aligned_imgs_paths)
            nrof_batches = int(math.ceil(1.0 * nrof_images / BATCH_SIZE))
            emb_array = np.zeros((nrof_images, embedding_size))

            for i in range(nrof_batches):
                start_index = i * BATCH_SIZE
                end_index = min((i + 1) * BATCH_SIZE, nrof_images)
                paths_batch = aligned_imgs_paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False, IMG_SIZE)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            with open(embeddings_path, 'wb') as f:
                pickle.dump((emb_array, img_idxs), f)
            logging.info('saved embeddings: {}'.format(embeddings_path))

            for i in range(len(emb_array)):
                logging.debug('embedding: {}: {}'.format(
                    i, aligned_imgs_paths[i]))

            return emb_array, img_idxs
Esempio n. 5
0
def faces_to_vectors(inpath, modelpath, outpath, imgsize, batchsize=100):
    '''
    Given a folder and a model, loads images and performs forward pass to get a vector for each face
    results go to a JSON, with filenames mapped to their facevectors
    :param inpath: Where are your images? Must be cropped to faces (use MTCNN!)
    :param modelpath: Where is the tensorflow model we'll use to create the embedding?
    :param outpath: Full path to output file (better give it a JSON extension)
    :return: Number of faces converted to vectors
    '''
    results = dict()

    with tf.Graph().as_default():
        with tf.Session() as sess:

            load_model(modelpath)
            mdl = None

            image_paths = get_image_paths(inpath)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            # Let's do them in batches, don't want to run out of memory
            for i in range(0, len(image_paths), batchsize):
                images = load_data(image_paths=image_paths[i:i + batchsize],
                                   do_random_crop=False,
                                   do_random_flip=False,
                                   image_size=imgsize,
                                   do_prewhiten=True)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }

                emb_array = sess.run(embeddings, feed_dict=feed_dict)
                for j in range(0, len(emb_array)):
                    relpath = os.path.relpath(image_paths[i + j], inpath)
                    results[relpath] = emb_array[j].tolist()

    # All done, save for later!
    json.dump(results, open(outpath, "w"))

    return len(results.keys())
def get_index(aligned_user_img_path, trained_model_path):
    embeddings_arr = None
    with tf.Graph().as_default():
        with tf.Session() as sess:
            facenet.load_model(trained_model_path)
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            images = facenet.load_data([aligned_user_img_path], False, False,
                                       IMG_SIZE)
            feed_dict = {
                images_placeholder: images,
                phase_train_placeholder: False
            }
            embeddings_arr = sess.run(embeddings, feed_dict=feed_dict)
    return embeddings_arr[0]
Esempio n. 7
0
    def fit(self):
        self.model_status = 'TRAIN'
        self.data_dir = My_align_dataset_mtcnn(0, 160, 32, True,
                                               0.25).output_dir

        with tf.Graph().as_default():
            with tf.Session() as sess:
                np.random.seed(seed=self.seed)
                if self.use_split_dataset:
                    dataset_tmp = facenet.get_dataset(self.data_dir)
                    train_set, test_set = self.split_dataset(
                        dataset_tmp, self.min_nrof_images_per_class,
                        self.nrof_train_images_per_class)
                    if (self.model_status == 'TRAIN'):
                        dataset = train_set
                    elif (self.model_status == 'CLASSIFY'):
                        dataset = test_set
                else:
                    dataset = facenet.get_dataset(self.data_dir)

                # Check that there are at least one training image per class
                for cls in dataset:
                    assert (
                        len(cls.image_paths) > 0,
                        'There must be at least one image for each class in the dataset'
                    )

                self.paths, self.labels = facenet.get_image_paths_and_labels(
                    dataset)
                print("paths", self.paths)
                print("labels", self.labels)
                print('Number of classes: %d' % len(dataset))
                print('Number of images: %d' % len(self.paths))

                # Load the model
                print('Loading feature extraction model', self.model)
                load_model_YesOrNo = facenet.load_model(self.model)

                # Get input and output tensors
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                # Run forward pass to calculate embeddings
                print('Calculating features for images')
                nrof_images = len(self.paths)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / self.batch_size))
                print(nrof_images, self.batch_size, nrof_batches_per_epoch,
                      embedding_size)
                self.emb_array = np.zeros((nrof_images, embedding_size))
                for i in range(nrof_batches_per_epoch):
                    start_index = i * self.batch_size
                    end_index = min((i + 1) * self.batch_size, nrof_images)
                    paths_batch = self.paths[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               self.image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    self.emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)
                print("shape", self.emb_array.shape)

                self.classifier_filename_exp = os.path.expanduser(
                    self.classifier_filename)
                # Train classifier
                print('Training classifier')
                self.classify_model = SVC(kernel='linear', probability=True)
                self.classify_model.fit(self.emb_array, self.labels)

                # Create a list of class names
                self.class_names = [
                    cls.name.replace('_', ' ') for cls in dataset
                ]
    def calculate_embeddings(self,
                             faces,
                             data_from_pipeline=True,
                             batch_size=100,
                             image_size=160):
        images_placeholder = tf.get_default_graph().get_tensor_by_name(
            "input:0")
        embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
        phase_train_placeholder = tf.get_default_graph().get_tensor_by_name(
            "phase_train:0")
        embedding_size = embeddings.get_shape()[1]

        emb_array = None

        # print('Calculating features for images')

        # bar = Bar('Processing', max = len(input_data))
        i = 0

        if data_from_pipeline:
            i += 1

            if len(faces):
                face_images = []

                emb_array = np.zeros((len(faces), embedding_size))

                for face in faces:
                    img = face

                    img = cv2.resize(img,
                                     dsize=(image_size, image_size),
                                     interpolation=cv2.INTER_CUBIC)

                    img = facenet.prewhiten(img)
                    img = facenet.crop(img, False, image_size)
                    img = facenet.flip(img, False)

                    face_images.append(img)

                feed_dict = {
                    images_placeholder: np.array(face_images),
                    phase_train_placeholder: False
                }
                emb_array = self._sess.run(embeddings, feed_dict=feed_dict)

        # bar.next()
        else:
            nrof_images = len(faces)
            nrof_batches_per_epoch = int(
                math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))

            for i in range(nrof_batches_per_epoch):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = faces[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = self._sess.run(
                    embeddings, feed_dict=feed_dict)

        # bar.goto(bar.index + end_index - start_index)

        # bar.finish()

        return emb_array
Esempio n. 9
0
def main(args):

    with tf.Graph().as_default():

        with tf.Session() as sess:

            np.random.seed(seed=args.seed)

            if args.use_split_dataset:
                dataset_tmp = facenet.get_dataset(args.data_dir)
                train_set, test_set = split_dataset(
                    dataset_tmp, args.min_nrof_images_per_class,
                    args.nrof_train_images_per_class)
                if (args.mode == 'TRAIN'):
                    dataset = train_set
                elif (args.mode == 'CLASSIFY'):
                    dataset = test_set
            else:
                dataset = facenet.get_dataset(args.data_dir)

            # Check that there are at least one training image per class
            for cls in dataset:
                assert (
                    len(cls.image_paths) > 0,
                    'There must be at least one image for each class in the dataset'
                )

            paths, labels = facenet.get_image_paths_and_labels(dataset)

            print('Number of classes: %d' % len(dataset))
            print('Number of images: %d' % len(paths))

            # Load the model
            print('Loading feature extraction model')
            facenet.load_model(args.model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            # Run forward pass to calculate embeddings
            print('Calculating features for images')
            nrof_images = len(paths)
            nrof_batches_per_epoch = int(
                math.ceil(1.0 * nrof_images / args.batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            for i in range(nrof_batches_per_epoch):
                start_index = i * args.batch_size
                end_index = min((i + 1) * args.batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           args.image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            classifier_filename_exp = os.path.expanduser(
                args.classifier_filename)

            if (args.mode == 'TRAIN'):
                # Train classifier
                print('Training classifier')
                model = GaussianNB()
                #model = SVC(kernel='linear', probability=True)
                model.fit(emb_array, labels)

                # Create a list of class names
                class_names = [cls.name.replace('_', ' ') for cls in dataset]

                # Saving classifier model
                with open(classifier_filename_exp, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                print('Saved classifier model to file "%s"' %
                      classifier_filename_exp)

            elif (args.mode == 'CLASSIFY'):
                # Classify images
                print('Testing classifier')
                with open(classifier_filename_exp, 'rb') as infile:
                    (model, class_names) = pickle.load(infile)

                print('Loaded classifier model from file "%s"' %
                      classifier_filename_exp)

                predictions = model.predict_proba(emb_array)
                best_class_indices = np.argmax(predictions, axis=1)
                best_class_probabilities = predictions[
                    np.arange(len(best_class_indices)), best_class_indices]

                for i in range(len(best_class_indices)):
                    print('%4d  %s: %.3f' %
                          (i, class_names[best_class_indices[i]],
                           best_class_probabilities[i]))

                accuracy = np.mean(np.equal(best_class_indices, labels))
                print('Accuracy: %.3f' % accuracy)
Esempio n. 10
0
def classify(use_split_dataset, mode, data_dir, min_nrof_images_per_class,
             nrof_train_images_per_class, model, classifier_filename,
             batch_size, image_size):

    seed = 666
    with tf.Graph().as_default():
        with tf.Session() as sess:
            np.random.seed(seed=seed)

            if use_split_dataset:
                dataset_tmp = facenet.get_dataset(data_dir)
                train_set, test_set = split_dataset(
                    dataset_tmp, min_nrof_images_per_class,
                    nrof_train_images_per_class)
                if (args.mode == 'TRAIN'):
                    dataset = train_set
                elif (args.mode == 'CLASSIFY'):
                    dataset = test_set
            else:
                dataset = facenet.get_dataset(data_dir)

            # Check that there are at least one training image per class
            for cls in dataset:
                assert (
                    len(cls.image_paths) > 0,
                    'There must be at least one image for each class in the dataset'
                )

            paths, labels = facenet.get_image_paths_and_labels(dataset)

            # print('Number of classes: %d' % len(dataset))
            # print('Number of images: %d' % len(paths))

            # Load the model
            # print('Loading feature extraction model')
            facenet.load_model(model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            # Run forward pass to calculate embeddings
            print('Calculating features for images')
            nrof_images = len(paths)
            nrof_batches_per_epoch = int(
                math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            for i in range(nrof_batches_per_epoch):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            classifier_filename_exp = os.path.expanduser(classifier_filename)

            res = []

            # print('Testing classifier')
            with open(classifier_filename_exp, 'rb') as infile:
                (model, class_names) = pickle.load(infile)

            # print('Loaded classifier model from file "%s"' % classifier_filename_exp)

            predictions = model.predict_proba(emb_array)
            best_class_indices = np.argmax(predictions, axis=1)
            best_class_probabilities = predictions[
                np.arange(len(best_class_indices)), best_class_indices]

            for i in range(len(best_class_indices)):
                print('%4d  %s: %.3f' % (i, class_names[best_class_indices[i]],
                                         best_class_probabilities[i]))
                res.append((i, class_names[best_class_indices[i]],
                            best_class_probabilities[i]))

            accuracy = np.mean(np.equal(best_class_indices, labels))
            print('Accuracy: %.3f' % accuracy)

            return res
Esempio n. 11
0
def train(use_split_dataset, mode, data_dir, min_nrof_images_per_class,
          nrof_train_images_per_class, model, classifier_filename, batch_size,
          image_size):

    seed = 666

    with tf.Graph().as_default():
        with tf.Session() as sess:
            np.random.seed(seed=seed)

            if use_split_dataset:
                dataset_tmp = facenet.get_dataset(data_dir)
                train_set, test_set = split_dataset(
                    dataset_tmp, min_nrof_images_per_class,
                    nrof_train_images_per_class)
                if (args.mode == 'TRAIN'):
                    dataset = train_set
                elif (args.mode == 'CLASSIFY'):
                    dataset = test_set
            else:
                dataset = facenet.get_dataset(data_dir)

            # Check that there are at least one training image per class
            for cls in dataset:
                assert (
                    len(cls.image_paths) > 0,
                    'There must be at least one image for each class in the dataset'
                )

            paths, labels = facenet.get_image_paths_and_labels(dataset)

            # print('Number of classes: %d' % len(dataset))
            # print('Number of images: %d' % len(paths))

            # Load the model
            # print('Loading feature extraction model')
            facenet.load_model(model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            # Run forward pass to calculate embeddings
            print('Calculating features for images')
            nrof_images = len(paths)
            nrof_batches_per_epoch = int(
                math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            for i in range(nrof_batches_per_epoch):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            classifier_filename_exp = os.path.expanduser(classifier_filename)

            print('Training classifier')
            model = SVC(kernel='linear', probability=True)
            model.fit(emb_array, labels)

            # Create a list of class names
            class_names = [cls.name.replace('_', ' ') for cls in dataset]

            # Saving classifier model
            with open(classifier_filename_exp, 'wb') as outfile:
                pickle.dump((model, class_names), outfile)
            print('Saved classifier model to file "%s"' %
                  classifier_filename_exp)
Esempio n. 12
0
with tf.Graph().as_default():
    with tf.Session() as sess:
        np.random.seed(seed=666)
        os.system("python facenet/src/align/align_dataset_mtcnn.py " +
                  sys.argv[1] +
                  " aligned --image_size 160 --margin 32 --random_order")
        dataset = facenet.get_dataset("aligned")
        paths, labels = facenet.get_image_paths_and_labels(dataset)
        facenet.load_model('20180402-114759.pb')
        images_placeholder = tf.get_default_graph().get_tensor_by_name(
            "input:0")
        embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
        phase_train_placeholder = tf.get_default_graph().get_tensor_by_name(
            "phase_train:0")
        embedding_size = embeddings.get_shape()[1]
        images = facenet.load_data(paths, False, False, 150)
        emb_array_1 = np.zeros((len(labels), embedding_size))
        j = min(len(images) - 1, 500)
        i = 0
        while j < len(images):
            feed_dict = {
                images_placeholder: images[i:j],
                phase_train_placeholder: False
            }
            emb_array_1[i:j, :] = sess.run(embeddings, feed_dict=feed_dict)
            i = j
            j += 500
        model = KMeans(n_clusters=max(labels) + 1,
                       random_state=40,
                       max_iter=1000)
        model.fit(emb_array_1, labels)
Esempio n. 13
0
def embeding(model_dir='20170512-110547',
             data_dir='database_aligned',
             is_aligned=True,
             image_size=160,
             margin=44,
             gpu_memory_fraction=1.0,
             image_batch=1000,
             embeddings_name='embeddings.npy',
             labels_name='labels.npy',
             labels_strings_name='label_strings.npy',
             return_image_list=False):
    train_set = facenet.get_dataset(data_dir)
    image_list, label_list = facenet.get_image_paths_and_labels(train_set)
    # fetch the classes (labels as strings) exactly as it's done in get_dataset
    path_exp = os.path.expanduser(data_dir)
    classes = [
        path for path in os.listdir(path_exp)
        if os.path.isdir(os.path.join(path_exp, path))
    ]
    # get the label strings
    label_strings = [
        name for name in classes if os.path.isdir(os.path.join(path_exp, name))
    ]

    with tf.Graph().as_default():

        with tf.Session() as sess:

            # Load model
            facenet.load_model(model_dir)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")  # noqa: E501
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")  # noqa: E501
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            # Run forward pass to calculate embeddings
            nrof_images = len(image_list)
            print('Number of images: ', nrof_images)
            batch_size = image_batch
            if nrof_images % batch_size == 0:
                nrof_batches = nrof_images // batch_size
            else:
                nrof_batches = (nrof_images // batch_size) + 1
            print('Number of batches: ', nrof_batches)
            embedding_size = embeddings.get_shape()[1]
            emb_array = np.zeros((nrof_images, embedding_size))
            start_time = time.time()

            for i in range(nrof_batches):
                if i == nrof_batches - 1:
                    n = nrof_images
                else:
                    n = i * batch_size + batch_size
                # Get images for the batch
                if is_aligned is True:
                    images = facenet.load_data(image_list[i * batch_size:n],
                                               False, False, image_size)
                else:
                    images = load_and_align_data(image_list[i * batch_size:n],
                                                 image_size, margin,
                                                 gpu_memory_fraction)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                # Use the facenet model to calculate embeddings
                embed = sess.run(embeddings, feed_dict=feed_dict)
                emb_array[i * batch_size:n, :] = embed
                print('Completed batch', i + 1, 'of', nrof_batches)

            run_time = time.time() - start_time
            print('Run time: ', run_time)

            #   export embeddings and labels
            label_list = np.array(label_list)

            np.save(embeddings_name, emb_array)
            if emb_array.size > 0:
                labels_final = (label_list) - np.min(label_list)
                np.save(labels_name, labels_final)
                label_strings = np.array(label_strings)
                np.save(labels_strings_name, label_strings[labels_final])
                np.save('image_list.npy', image_list)
            if return_image_list:
                np.save('validation_image_list.npy', image_list)
                return image_list, emb_array
Esempio n. 14
0
    def like_or_dislike_users(self, users):
        # automatically like or dislike users based on your previously trained
        # model on your historical preference.

        # facenet settings from export_embeddings....
        data_dir = 'temp_images_aligned'
        embeddings_name = 'temp_embeddings.npy'
        # labels_name = 'temp_labels.npy'
        # labels_strings_name = 'temp_label_strings.npy'
        is_aligned = True
        image_size = 160
        margin = 44
        gpu_memory_fraction = 1.0
        image_batch = 1000
        prev_user = None
        for user in users:
            clean_temp_images()
            urls = user.get_photos(width='640')
            image_list = download_url_photos(urls, user.id, is_temp=True)
            # align the database
            tindetheus_align.main(input_dir='temp_images',
                                  output_dir='temp_images_aligned')
            # export the embeddings from the aligned database

            train_set = facenet.get_dataset(data_dir)
            image_list_temp, label_list = facenet.get_image_paths_and_labels(
                train_set)  # noqa: E501

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")  # noqa: E501
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")  # noqa: E501
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")  # noqa: E501

            # Run forward pass to calculate embeddings
            nrof_images = len(image_list_temp)
            print('Number of images: ', nrof_images)
            batch_size = image_batch
            if nrof_images % batch_size == 0:
                nrof_batches = nrof_images // batch_size
            else:
                nrof_batches = (nrof_images // batch_size) + 1
            print('Number of batches: ', nrof_batches)
            embedding_size = embeddings.get_shape()[1]
            emb_array = np.zeros((nrof_images, embedding_size))
            start_time = time.time()

            for i in range(nrof_batches):
                if i == nrof_batches - 1:
                    n = nrof_images
                else:
                    n = i * batch_size + batch_size
                # Get images for the batch
                if is_aligned is True:
                    images = facenet.load_data(
                        image_list_temp[i * batch_size:n],  # noqa: E501
                        False,
                        False,
                        image_size)
                else:
                    images = load_and_align_data(
                        image_list_temp[i * batch_size:n],  # noqa: E501
                        image_size,
                        margin,
                        gpu_memory_fraction)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                # Use the facenet model to calculate embeddings
                embed = self.sess.run(embeddings, feed_dict=feed_dict)
                emb_array[i * batch_size:n, :] = embed
                print('Completed batch', i + 1, 'of', nrof_batches)

            run_time = time.time() - start_time
            print('Run time: ', run_time)

            # export embeddings and labels
            label_list = np.array(label_list)

            np.save(embeddings_name, emb_array)

            if emb_array.size > 0:
                # calculate the n average embedding per profiles
                X = calc_avg_emb_temp(emb_array)
                # evaluate on the model
                yhat = self.model.predict(X)

                if yhat[0] == 1:
                    didILike = 'Like'
                    # check to see if this is the same user as before
                    if prev_user == user.id:
                        clean_temp_images_aligned()
                        print('\n\n You have already liked this user!!! \n \n')
                        print('This typically means you have used all of your'
                              ' free likes. Exiting program!!! \n\n')
                        self.likes_left = -1
                        return
                    else:
                        prev_user = user.id
                else:
                    didILike = 'Dislike'
            else:
                # there were no faces in this profile
                didILike = 'Dislike'
            print('**************************************************')
            print(user.name, user.age, didILike)
            print('**************************************************')

            dbase_names = move_images_temp(image_list, user.id)

            if didILike == 'Like':
                print(user.like())
                self.likes_left -= 1
            else:
                print(user.dislike())
            userList = [
                user.id, user.name, user.age, user.bio, user.distance_km,
                user.jobs, user.schools,
                user.get_photos(width='640'), dbase_names, didILike
            ]
            self.al_database.append(userList)
            np.save('al_database.npy', self.al_database)
            clean_temp_images_aligned()