def evaluate_with_no_cv(emb_array, actual_issame): thresholds = np.arange(0, 4, 0.01) embeddings1 = emb_array[0::2] embeddings2 = emb_array[1::2] nrof_thresholds = len(thresholds) accuracys = np.zeros((nrof_thresholds)) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff),1) for threshold_idx, threshold in enumerate(thresholds): _, _, accuracys[threshold_idx] = facenet.calculate_accuracy(threshold, dist, actual_issame) best_acc = np.max(accuracys) best_thre = thresholds[np.argmax(accuracys)] return best_acc,best_thre