def testDecovLoss(self): batch_size = 7 image_size = 4 channels = 3 with tf.Graph().as_default(): xs = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, channels), name='input') loss = facenet.decov_loss(xs) sess = tf.Session() with sess.as_default(): np.random.seed(seed=666) xs_ = np.random.normal(loc=0.0, scale=0.1, size=(batch_size,image_size,image_size,channels)) xflat = xs_.reshape([batch_size,image_size*image_size*channels]) ui = np.mean(xflat,0) nd = image_size*image_size*channels corr_ref = np.zeros((nd,nd)) for i in range(nd): for j in range(nd): corr_ref[i,j] = 0.0 for n in range(batch_size): corr_ref[i,j] += (xflat[n,i]-ui[i]) * (xflat[n,j]-ui[j]) / batch_size corr_frob_sqr_ref = np.trace(np.matmul(corr_ref.T, corr_ref)) corr_diag_sqr_ref = np.sum(np.square(np.diag(corr_ref))) loss_ref = 0.5*(corr_frob_sqr_ref - corr_diag_sqr_ref) loss_ = sess.run(loss, feed_dict={xs:xs_}) testing.assert_almost_equal(loss_ref, loss_, 6, 'Tensorflow implementation gives a different result compared to reference')
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.nrof_preprocess_threads) print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=True, weight_decay=args.weight_decay) logits = slim.fully_connected( prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.center_loss( prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables(), args.log_histograms) # Evaluation print('Building evaluation graph') lfw_label_list = range(0, len(lfw_paths)) assert ( len(lfw_paths) % args.lfw_batch_size == 0 ), "The number of images in the LFW test set need to be divisible by the lfw_batch_size" eval_image_batch, eval_label_batch = facenet.read_and_augument_data( lfw_paths, lfw_label_list, args.image_size, args.lfw_batch_size, None, False, False, args.nrof_preprocess_threads, shuffle=False) # Node for input images eval_image_batch.set_shape((None, args.image_size, args.image_size, 3)) eval_image_batch = tf.identity(eval_image_batch, name='input') eval_prelogits, _ = network.inference(eval_image_batch, 1.0, phase_train=False, weight_decay=0.0, reuse=True) eval_embeddings = tf.nn.l2_normalize(eval_prelogits, 1, 1e-10, name='embeddings') # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) return model_dir
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.nrof_preprocess_threads) print('Total number of classes: %d' % len(train_set)) print('Total number of examples: %d' % len(image_list)) # Node for input images image_batch.set_shape((None, args.image_size, args.image_size, 3)) image_batch = tf.identity(image_batch, name='input') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) with tf.variable_scope('Logits'): n = int(prelogits.get_shape()[1]) m = len(train_set) w = tf.get_variable( 'w', shape=[n, m], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.1), regularizer=slim.l2_regularizer(args.weight_decay), trainable=True) b = tf.get_variable('b', [m], initializer=None, trainable=True) logits = tf.matmul(prelogits, w) + b # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss update_centers = tf.no_op('update_centers') if args.center_loss_factor > 0.0: prelogits_center_loss, update_centers = facenet.center_loss( prelogits, label_batch, args.center_loss_alfa) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables(), args.log_histograms) # Create a saver save_variables = list(set(tf.all_variables()) - set([w]) - set([b])) saver = tf.train.Saver(save_variables, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: saver.restore(sess, pretrained_model) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, phase_train_placeholder, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, update_centers) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: start_time = time.time() _, _, accuracy, val, val_std, far = lfw.validate( sess, lfw_paths, actual_issame, args.seed, args.batch_size, image_batch, phase_train_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) lfw_time = time.time() - start_time # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary.value.add(tag='time/lfw', simple_value=lfw_time) summary_writer.add_summary(summary, step) with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) return model_dir
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) # 创建模型文件夹 if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) if args.baihe_pack_file: print('load baihe dataset') lfw_paths, actual_issame = msgpack_numpy.load(open(args.baihe_pack_file)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) # 迭代轮数, 不同的轮数可以使用不同的学习率 global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augment_data(image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.random_rotate, args.nrof_preprocess_threads) print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Build the inference graph, 返回的是网络结构 prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=True, weight_decay=args.weight_decay) # 初始化采用截断的正态分布噪声, 标准差为0.1 # tf.truncated_normal_initializer(stddev=0.1) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss(logits) * args.decov_loss_factor # 将decov_loss加入到名字为tf.GraphKeys.REGULARIZATION_LOSSES的集合当中来 tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss (center_loss作为一个正则项加入到collections) if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) # 将center加入到名字为tf.GraphKeys.REGULARIZATION_LOSSES的集合当中来 tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) # 对学习率进行指数衰退 learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch # 将softmax和交叉熵一起做,得到最后的损失函数,提高效率 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses # 获取正则loss regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables(), args.log_histograms) # Evaluation print('Building evaluation graph') lfw_label_list = range(0, len(lfw_paths)) assert (len(lfw_paths) % args.lfw_batch_size == 0), \ "The number of images in the LFW test set need to be divisible by the lfw_batch_size" eval_image_batch, eval_label_batch = facenet.read_and_augment_data(lfw_paths, lfw_label_list, args.image_size, args.lfw_batch_size, None, False, False, False, args.nrof_preprocess_threads, shuffle=False) # Node for input images eval_image_batch.set_shape((None, args.image_size, args.image_size, 3)) eval_image_batch = tf.identity(eval_image_batch, name='input') eval_prelogits, _ = network.inference(eval_image_batch, 1.0, phase_train=False, weight_decay=0.0, reuse=True) eval_embeddings = tf.nn.l2_normalize(eval_prelogits, 1, 1e-10, name='embeddings') # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=10) # saver = tf.train.Saver(tf.global_variables(), max_to_keep=10) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) # sess.run(tf.global_variables_initializer()) # sess.run(tf.local_variables_initializer()) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) # 将队列runner启动,队列就开始运行,返回启动的线程 # 注意input_queue是先入列,再出列,由于入列的时候输入是place holder,因此到后的线程的时候,会阻塞, # 直到下train中sess run (enqueue_op)的时候, 会向队列中载入值,后面的出列才有对象,才在各自的队列中开始执行 with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: try: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) # Evaluate on baihe_data if args.baihe_pack_file: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) except: traceback.print_exc() continue return model_dir
def main(args): #network = importlib.import_module(args.model_def, 'inception_v3') network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) with open(os.path.join(model_dir, 'args.txt'), 'w') as f: for arg in vars(args): f.write(arg + ' ' + str(getattr(args, arg)) + '\n') # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) #train_set = facenet.get_dataset(args.data_dir) train_set = facenet.get_dataset_with_enhanced(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_rotate, args.random_crop, args.random_flip, args.nrof_preprocess_threads, args.padding_size, args.patch_type) #print('Total number of classes: %d' % len(train_set)) print('Total number of examples: %d' % len(image_list)) # Node for input images image_batch = tf.identity(image_batch, name='input') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Placeholder for keep probability keep_probability_placeholder = tf.placeholder(tf.float32, name='keep_prob') # Build the inference graph # prelogits = network.inference(image_batch, keep_probability_placeholder, # phase_train=phase_train_placeholder, weight_decay=args.weight_decay) batch_norm_params = { # Decay for the moving averages 'decay': 0.995, # epsilon to prevent 0s in variance 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES], # Only update statistics during training mode 'is_training': phase_train_placeholder } #prelogits, _ = network.inception_v3(image_batch, num_classes=len(train_set),is_training=True) prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) #prelogits = tf.identity(prelogits, name="prelogits") bottleneck = _fully_connected(prelogits, args.embedding_size, name='pre_embedding') #bottleneck = tf.nn.l2_normalize(bottleneck, dim=1,name='embedding') logits = _fully_connected_classifier(bottleneck, len(train_set), name='logits') """ bottleneck = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params, scope='Bottleneck', reuse=False) logits = slim.fully_connected(bottleneck, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) logits = tf.identity(logits, name="logits") """ # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss update_centers = tf.no_op('update_centers') if args.center_loss_factor > 0.0: prelogits_center_loss, update_centers = facenet.center_loss( bottleneck, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) #embeddings = tf.nn.l2_normalize(bottleneck, 1, 1e-10, name='embeddings') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') """ # Multi-label loss: sigmoid loss sigmoid_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=label_batch, logits=logits, name='sigmoid_loss_per_example') sigmoid_loss_mean = tf.reduce_mean(sigmoid_loss, name='sigmoid_loss') """ tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') #total_loss = tf.add_n([cross_entropy_mean], name='total_loss') # prediction prediction = tf.argmax(logits, axis=1, name='prediction') acc = slim.metrics.accuracy(predictions=tf.cast(prediction, dtype=tf.int32), labels=tf.cast(label_batch, dtype=tf.int32)) # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver # save_variables = list(set(tf.all_variables())-set([w])-set([b])) save_variables = tf.trainable_variables() saver = tf.train.Saver(save_variables, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) # sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: saver.restore(sess, pretrained_model) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, phase_train_placeholder, learning_rate_placeholder, keep_probability_placeholder, global_step, total_loss, acc, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, update_centers) # Evaluate on LFW if args.lfw_dir: start_time = time.time() _, _, accuracy, val, val_std, far = lfw.validate( sess, lfw_paths, actual_issame, args.seed, args.batch_size, image_batch, phase_train_placeholder, keep_probability_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) lfw_time = time.time() - start_time # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary.value.add(tag='time/lfw', simple_value=lfw_time) summary_writer.add_summary(summary, step) with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir