Esempio n. 1
0
def train():
  dataset = facenet.get_dataset(FLAGS.data_dir)
  train_set, test_set = facenet.split_dataset(dataset, 0.9)
  
  fileName = "/home/david/debug4.h5"
  f = h5py.File(fileName,  "r")
  for item in f.values():
    print(item)
  
  w1 = f['1w'][:]
  b1 = f['1b'][:]
  f.close()
  print(w1.shape)
  print(b1.shape)
  
  """Train CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)

    # Placeholder for input images
    images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, 96, 96, 3), name='Input')
    
    # Build a Graph that computes the logits predictions from the inference model
    #embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=True)
    
    conv1 = _conv(images_placeholder, 3, 64, 7, 7, 2, 2, 'SAME', 'conv1_7x7', phase_train=False, use_batch_norm=False, init_weight=w1, init_bias=b1)
    resh1 = tf.reshape(conv1, [-1, 294912])
    embeddings = _affine(resh1, 294912, 128)
    
        
    # Split example embeddings into anchor, positive and negative
    a, p, n = tf.split(0, 3, embeddings)

    # Calculate triplet loss
    loss = facenet.triplet_loss(a, p, n)

    # Build a Graph that trains the model with one batch of examples and updates the model parameters
    train_op, grads = facenet.train(loss, global_step)
    
    # Create a saver
    saver = tf.train.Saver(tf.all_variables())

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()
    
    # Start running operations on the Graph.
    sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, graph_def=sess.graph_def)
    
    epoch = 0
    
    with sess.as_default():

      while epoch<FLAGS.max_nrof_epochs:
        batch_number = 0
        while batch_number<FLAGS.epoch_size:
          print('Loading new data')
          image_data, num_per_class, image_paths = facenet.load_data(train_set)
      
          print('Selecting suitable triplets for training')
          start_time = time.time()
          emb_list = []
          # Run a forward pass for the sampled images
          nrof_examples_per_epoch = FLAGS.people_per_batch*FLAGS.images_per_person
          nrof_batches_per_epoch = int(np.floor(nrof_examples_per_epoch/FLAGS.batch_size))
          if True:
            for i in xrange(nrof_batches_per_epoch):
              feed_dict, _ = facenet.get_batch(images_placeholder, image_data, i)
              emb_list += sess.run([embeddings], feed_dict=feed_dict)
            emb_array = np.vstack(emb_list)  # Stack the embeddings to a nrof_examples_per_epoch x 128 matrix
            # Select triplets based on the embeddings
            apn, nrof_random_negs, nrof_triplets = facenet.select_triplets(emb_array, num_per_class, image_data)
            duration = time.time() - start_time
            print('(nrof_random_negs, nrof_triplets) = (%d, %d): time=%.3f seconds' % (nrof_random_negs, nrof_triplets, duration))
            
            count = 0
            while count<nrof_triplets*3 and batch_number<FLAGS.epoch_size:
              start_time = time.time()
              feed_dict, batch = facenet.get_batch(images_placeholder, apn, batch_number)
              if (batch_number%20==0):
                err, summary_str, _  = sess.run([loss, summary_op, train_op], feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, FLAGS.epoch_size*epoch+batch_number)
              else:
                err, _  = sess.run([loss, train_op], feed_dict=feed_dict)
              duration = time.time() - start_time
              print('Epoch: [%d][%d/%d]\tTime %.3f\ttripErr %2.3f' % (epoch, batch_number, FLAGS.epoch_size, duration, err))
              batch_number+=1
              count+=FLAGS.batch_size

          else:
  
            while batch_number<FLAGS.epoch_size:
              start_time = time.time()
              feed_dict, _ = facenet.get_batch(images_placeholder, image_data, batch_number)
              
              grad_tensors, grad_vars = zip(*grads)
              eval_list = (train_op, loss) + grad_tensors
              result  = sess.run(eval_list, feed_dict=feed_dict)
              grads_eval = result[2:]
              nrof_parameters = 0
              for gt, gv in zip(grads_eval, grad_vars):
                print('%40s: %6d' % (gv.op.name, np.size(gt)))
                nrof_parameters += np.size(gt)
              print('Total number of parameters: %d' % nrof_parameters)
              err = result[1]
              batch_number+=1
        epoch+=1

      # Save the model checkpoint periodically.
      checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
      saver.save(sess, checkpoint_path, global_step=epoch*FLAGS.epoch_size+batch_number)
Esempio n. 2
0
def main(args):
  
    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))
        
    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), 
            args.filter_percentile, args.filter_min_nrof_images_per_class)
        
    if args.validation_set_split_ratio>0.0:
        train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []
        
    nrof_classes = len(train_set)
    
    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)
        
        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list)>0, 'The training set should not be empty'
        
        val_image_list, val_label_list = facenet.get_image_paths_and_labels(val_set)

        # Create a queue that produces indices into the image_list and label_list 
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size, num_epochs=None,
                             shuffle=True, seed=None, capacity=32)
        
        index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue')
        
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
        control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
        
        nrof_preprocess_threads = 4
        input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                    dtypes=[tf.string, tf.int32, tf.int32],
                                    shapes=[(1,), (1,), (1,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')
        
        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))
        
        print('Building training graph')
        
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, 
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, 
                weights_initializer=slim.initializers.xavier_initializer(), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                scope='Logits', reuse=False)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor)

        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch, logits=logits, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        
        correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)
        
        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms)
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                saver.restore(sess, pretrained_model)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs*args.epoch_size
            nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs))   # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss': np.zeros((nrof_steps,), np.float32),
                'center_loss': np.zeros((nrof_steps,), np.float32),
                'reg_loss': np.zeros((nrof_steps,), np.float32),
                'xent_loss': np.zeros((nrof_steps,), np.float32),
                'prelogits_norm': np.zeros((nrof_steps,), np.float32),
                'accuracy': np.zeros((nrof_steps,), np.float32),
                'val_loss': np.zeros((nrof_val_samples,), np.float32),
                'val_xent_loss': np.zeros((nrof_val_samples,), np.float32),
                'val_accuracy': np.zeros((nrof_val_samples,), np.float32),
                'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32),
                'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32),
                'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_train': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_validate': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32),
                'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32),
              }
            for epoch in range(1,args.max_nrof_epochs+1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder,
                    learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, 
                    total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file,
                    stat, cross_entropy_mean, accuracy, learning_rate,
                    prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization)
                stat['time_train'][epoch-1] = time.time() - t
                
                if not cont:
                    break
                  
                t = time.time()
                if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder,
                        phase_train_placeholder, batch_size_placeholder, 
                        stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization)
                stat['time_validate'][epoch-1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, 
                        embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, 
                        args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch-1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.iteritems():
                        f.create_dataset(key, data=value)
    
    return model_dir
Esempio n. 3
0
def main(argv=None):  # pylint: disable=unused-argument
    if FLAGS.model_name:
        subdir = FLAGS.model_name
        preload_model = True
    else:
        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        preload_model = False
    log_dir = os.path.join(os.path.expanduser(FLAGS.logs_base_dir), subdir)
    model_dir = os.path.join(os.path.expanduser(FLAGS.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.mkdir(model_dir)
    
    np.random.seed(seed=FLAGS.seed)
    dataset = facenet.get_dataset(FLAGS.data_dir)
    train_set, validation_set = facenet.split_dataset(dataset, FLAGS.train_set_fraction, FLAGS.split_mode)
    
    print('Model directory: %s' % model_dir)

    with tf.Graph().as_default():
        tf.set_random_seed(FLAGS.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3),
                                            name='input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=phase_train_placeholder)

        # Split example embeddings into anchor, positive and negative
        anchor, positive, negative = tf.split(0, 3, embeddings)

        # Calculate triplet loss
        loss = facenet.triplet_loss(anchor, positive, negative)

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op, _ = facenet.train(loss, global_step)

        # Create a saver
        saver = tf.train.Saver(tf.all_variables(), max_to_keep=0)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        summary_writer = tf.train.SummaryWriter(log_dir, sess.graph)

        with sess.as_default():

            if preload_model:
                ckpt = tf.train.get_checkpoint_state(model_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                else:
                    raise ValueError('Checkpoint not found')

            # Training and validation loop
            for epoch in range(FLAGS.max_nrof_epochs):
                # Train for one epoch
                step = train(sess, train_set, epoch, images_placeholder, phase_train_placeholder,
                             global_step, embeddings, loss, train_op, summary_op, summary_writer)
                # Validate epoch
                validate(sess, validation_set, epoch, images_placeholder, phase_train_placeholder,
                         global_step, embeddings, loss, train_op, summary_op, summary_writer)

                # Save the model checkpoint after each epoch
                print('Saving checkpoint')
                checkpoint_path = os.path.join(model_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                graphdef_dir = os.path.join(model_dir, 'graphdef')
                graphdef_filename = 'graph_def.pb'
                if (not os.path.exists(os.path.join(graphdef_dir, graphdef_filename))):
                    print('Saving graph definition')
                    tf.train.write_graph(sess.graph_def, graphdef_dir, graphdef_filename, False)
Esempio n. 4
0
def main(args):

    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(
        datetime.now(), '%Y-%m-%d-%H-softmax-' +
        args.model_def.split(".")[-1] + "-" + args.data_dir.split("/")[-1])
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        dataset = filter_dataset(dataset,
                                 os.path.expanduser(args.filter_filename),
                                 args.filter_percentile,
                                 args.filter_min_nrof_images_per_class)

    if args.validation_set_split_ratio > 0.0:
        train_set, val_set = facenet.split_dataset(
            dataset, args.validation_set_split_ratio,
            args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []

    nrof_classes = len(train_set)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list) > 0, 'The training set should not be empty'

        val_image_list, val_label_list = facenet.get_image_paths_and_labels(
            val_set)

        # Create a queue that produces indices into the image_list and label_list
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size,
                                                    num_epochs=None,
                                                    shuffle=True,
                                                    seed=None,
                                                    capacity=32)

        index_dequeue_op = index_queue.dequeue_many(
            args.batch_size * args.epoch_size, 'index_dequeue')

        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 1),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(None, 1),
                                            name='labels')
        control_placeholder = tf.placeholder(tf.int32,
                                             shape=(None, 1),
                                             name='control')

        nrof_preprocess_threads = 4
        input_queue = data_flow_ops.FIFOQueue(
            capacity=2000000,
            dtypes=[tf.string, tf.int32, tf.int32],
            shapes=[(1, ), (1, ), (1, )],
            shared_name=None,
            name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder, control_placeholder],
            name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(
            input_queue, image_size, nrof_preprocess_threads,
            batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')

        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))

        print('Building training graph')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(
            prelogits,
            len(train_set),
            activation_fn=None,
            weights_initializer=slim.initializers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(args.weight_decay),
            scope='Logits',
            reuse=False)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(
            tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p,
                    axis=1))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_norm * args.prelogits_norm_loss_factor)

        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch,
                                                       args.center_loss_alfa,
                                                       nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch,
            logits=logits,
            name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                            name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)

        correct_prediction = tf.cast(
            tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)),
            tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables(), args.log_histograms)

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                ckpt = tf.train.get_checkpoint_state(pretrained_model)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs * args.epoch_size
            nrof_val_samples = int(
                math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)
            )  # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss':
                np.zeros((nrof_steps, ), np.float32),
                'center_loss':
                np.zeros((nrof_steps, ), np.float32),
                'reg_loss':
                np.zeros((nrof_steps, ), np.float32),
                'xent_loss':
                np.zeros((nrof_steps, ), np.float32),
                'prelogits_norm':
                np.zeros((nrof_steps, ), np.float32),
                'accuracy':
                np.zeros((nrof_steps, ), np.float32),
                'val_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_xent_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_accuracy':
                np.zeros((nrof_val_samples, ), np.float32),
                'lfw_accuracy':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'lfw_valrate2':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'lfw_valrate3':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'learning_rate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_train':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_validate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_evaluate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'prelogits_hist':
                np.zeros((args.max_nrof_epochs, 1000), np.float32),
            }
            for epoch in range(1, args.max_nrof_epochs + 1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                cont = train(
                    args, sess, epoch, image_list, label_list,
                    index_dequeue_op, enqueue_op, image_paths_placeholder,
                    labels_placeholder, learning_rate_placeholder,
                    phase_train_placeholder, batch_size_placeholder,
                    control_placeholder, global_step, total_loss, train_op,
                    summary_op, summary_writer, regularization_losses,
                    args.learning_rate_schedule_file, stat, cross_entropy_mean,
                    accuracy, learning_rate, prelogits, prelogits_center_loss,
                    args.random_rotate, args.random_crop, args.random_flip,
                    prelogits_norm, args.prelogits_hist_max,
                    args.use_fixed_image_standardization)
                stat['time_train'][epoch - 1] = time.time() - t

                if not cont:
                    break

                t = time.time()
                if len(val_image_list) > 0 and (
                    (epoch - 1) % args.validate_every_n_epochs
                        == args.validate_every_n_epochs - 1
                        or epoch == args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list,
                             enqueue_op, image_paths_placeholder,
                             labels_placeholder, control_placeholder,
                             phase_train_placeholder, batch_size_placeholder,
                             stat, total_loss, regularization_losses,
                             cross_entropy_mean, accuracy,
                             args.validate_every_n_epochs,
                             args.use_fixed_image_standardization)
                stat['time_validate'][epoch - 1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder,
                             labels_placeholder, phase_train_placeholder,
                             batch_size_placeholder, control_placeholder,
                             embeddings, label_batch, lfw_paths, actual_issame,
                             args.lfw_batch_size, args.lfw_nrof_folds, log_dir,
                             step, summary_writer, stat, epoch,
                             args.lfw_distance_metric, args.lfw_subtract_mean,
                             args.lfw_use_flipped_images,
                             args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch - 1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.items():
                        f.create_dataset(key, data=value)

    return model_dir
Esempio n. 5
0
def main(args):

    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir),
                           subdir)  #日志保存地址
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    # os.path.realpath(__file__)代表返回当前模块真实路径
    # os.path.split(os.path.realpath(__file__))代表返回路径的目录和文件名(元组形式)
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    # dataset是列表,列表元素为每一个类的ImageClass对象,定义见facenet.py文件
    dataset = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        dataset = filter_dataset(dataset,
                                 os.path.expanduser(args.filter_filename),
                                 args.filter_percentile,
                                 args.filter_min_nrof_images_per_class)

    # 划分训练集和测试集,train_set和val_set的形式和dataset一样
    if args.validation_set_split_ratio > 0.0:
        train_set, val_set = facenet.split_dataset(
            dataset, args.validation_set_split_ratio,
            args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []

    nrof_classes = len(train_set)  #类目数(即有多少人)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        # pairs也是列表,子元素也是列表,每个子列表包含pairs.txt的每一行
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        #lfw_paths为两两比较的列表,列表的元素为有2个元素的元祖,actual_issame为列表,表示每个元素是否为同一个人
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        # global_step对应的是全局批的个数,根据这个参数可以更新学习率
        global_step = tf.Variable(0, trainable=False)

        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list) > 0, 'The training set should not be empty'

        val_image_list, val_label_list = facenet.get_image_paths_and_labels(
            val_set)

        # Create a queue that produces indices into the image_list and label_list
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        # range_size的大小和样本个数一样
        range_size = array_ops.shape(labels)[0]
        #QueueRunner:保存的是队列中的入列操作,保存在一个list当中,其中每个enqueue运行在一个线程当中
        #range_input_producer:返回的是一个队列,队列中有打乱的整数,范围是从0到range size
        #range_size大小和总的样本个数一样
        #并将一个QueueRunner添加到当前图的QUEUE_RUNNER集合中
        index_queue = tf.train.range_input_producer(
            range_size, num_epochs=None, shuffle=True, seed=None,
            capacity=32)  #capacity代表队列容量

        # 返回的是一个出列操作,每次出列一个epoch需要用到的样本个数
        index_dequeue_op = index_queue.dequeue_many(
            args.batch_size * args.epoch_size, 'index_dequeue')

        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 1),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(None, 1),
                                            name='labels')
        control_placeholder = tf.placeholder(tf.int32,
                                             shape=(None, 1),
                                             name='control')

        # 上面的队列是一个样本索引的出队队列,只用来出列
        # 用来每次出列一个epoch中用到的样本
        # 这里是第二个队列,这个队列用来入列,每个元素的大小为shape=[(1,),(1,),(1,)]
        nrof_preprocess_threads = 4
        # 这里的shape代表每一个元素的维度
        input_queue = data_flow_ops.FIFOQueue(
            capacity=600000,
            dtypes=[tf.string, tf.int32, tf.int32],
            shapes=[(1, ), (1, ), (1, )],
            shared_name=None,
            name=None)

        # 这时一个入列的操作,这个操作将在session run的时候用到
        # 每次入列的是image_paths_placeholder, labels_placeholder对
        # 注意,这里只有2个队列,一个用来出列打乱的元素序号
        # 一个根据对应的需要读取指定的文件
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder, control_placeholder],
            name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(
            input_queue, image_size, nrof_preprocess_threads,
            batch_size_placeholder)

        # image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')

        print('Total number of classes: %d' % nrof_classes)
        print('Total number of examples: %d' % len(image_list))
        print('Building training graph')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # arcface_logits = arcface_logits_compute(embeddings, label_batch, args, nrof_classes)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)
        with tf.variable_scope('Logits'):
            arcface_logits = arcface_logits_compute(embeddings, label_batch,
                                                    args, nrof_classes)
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=label_batch,
                logits=arcface_logits,
                name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                            name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)

        correct_prediction = tf.cast(
            tf.equal(tf.argmax(arcface_logits, 1),
                     tf.cast(label_batch, tf.int64)), tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # for weights in slim.get_variables_by_name('embedding_weights'):
        #    weight_regularization = tf.contrib.layers.l2_regularizer(args.weight_decay)(weights)
        #    tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weight_regularization)

        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)

        if args.weight_decay == 0:
            total_loss = tf.add_n([cross_entropy_mean], name='total_loss')
        else:
            total_loss = tf.add_n([cross_entropy_mean] + regularization_losses,
                                  name='total_loss')

        #define two saver in case under 'finetuning on different dataset' situation
        saver_save = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables(), args.log_histograms)
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():
            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                facenet.load_model(pretrained_model)

            print('Running arcface training')

            best_accuracy = 0.0
            for epoch in range(1, args.max_nrof_epochs + 1):
                step = sess.run(global_step, feed_dict=None)
                cont = train(
                    args, sess, epoch, image_list, label_list,
                    index_dequeue_op, enqueue_op, image_paths_placeholder,
                    labels_placeholder, learning_rate_placeholder,
                    phase_train_placeholder, batch_size_placeholder,
                    global_step, total_loss, accuracy, train_op, summary_op,
                    summary_writer, regularization_losses,
                    args.learning_rate_schedule_file, args.random_rotate,
                    args.random_crop, args.random_flip,
                    args.use_fixed_image_standardization, control_placeholder)

                if not cont:
                    break
                print('validation running...')
                if args.lfw_dir:
                    best_accuracy = evaluate(
                        sess, enqueue_op, image_paths_placeholder,
                        labels_placeholder, phase_train_placeholder,
                        batch_size_placeholder, control_placeholder,
                        embeddings, label_batch, lfw_paths, actual_issame,
                        args.lfw_batch_size, args.lfw_nrof_folds, log_dir,
                        step, summary_writer, best_accuracy, saver_save,
                        model_dir, subdir, args.lfw_subtract_mean,
                        args.lfw_use_flipped_images,
                        args.use_fixed_image_standardization,
                        args.lfw_distance_metric)
    return model_dir
Esempio n. 6
0
def main(argv=None):  # pylint: disable=unused-argument
  
    if FLAGS.model_name:
        subdir = FLAGS.model_name
        preload_model = True
    else:
        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        preload_model = False
    log_dir = os.path.join(os.path.expanduser(FLAGS.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.mkdir(log_dir)
    model_dir = os.path.join(os.path.expanduser(FLAGS.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.mkdir(model_dir)

    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(argv))

    np.random.seed(seed=FLAGS.seed)
    dataset = facenet.get_dataset(FLAGS.data_dir)
    train_set, validation_set = facenet.split_dataset(dataset, FLAGS.train_set_fraction, FLAGS.split_mode)
    
    print('Model directory: %s' % model_dir)

    with tf.Graph().as_default():
        tf.set_random_seed(FLAGS.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(None, FLAGS.image_size, FLAGS.image_size, 3), name='input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = network.inference(images_placeholder, FLAGS.pool_type, FLAGS.use_lrn, 
                                       FLAGS.keep_probability, phase_train=phase_train_placeholder)

        # Split example embeddings into anchor, positive and negative
        anchor, positive, negative = tf.split(0, 3, embeddings)

        # Calculate triplet loss
        loss = facenet.triplet_loss(anchor, positive, negative, FLAGS.alpha)

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op, _ = facenet.train(loss, global_step, FLAGS.optimizer, FLAGS.learning_rate, FLAGS.moving_average_decay)

        # Create a saver
        saver = tf.train.Saver(tf.all_variables(), max_to_keep=0)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        summary_writer = tf.train.SummaryWriter(log_dir, sess.graph)

        with sess.as_default():

            if preload_model:
                ckpt = tf.train.get_checkpoint_state(model_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                else:
                    raise ValueError('Checkpoint not found')

            # Training and validation loop
            for epoch in range(FLAGS.max_nrof_epochs):
                # Train for one epoch
                step = train(sess, train_set, epoch, images_placeholder, phase_train_placeholder,
                             global_step, embeddings, loss, train_op, summary_op, summary_writer)
                
                # Store the state of the random number generator
                rng_state = np.random.get_state()
                # Test on validation set
                np.random.seed(seed=FLAGS.seed)
                validate(sess, validation_set, epoch, images_placeholder, phase_train_placeholder,
                         global_step, embeddings, loss, 'validation', summary_writer)
                # Test on training set
                np.random.seed(seed=FLAGS.seed)
                validate(sess, train_set, epoch, images_placeholder, phase_train_placeholder,
                         global_step, embeddings, loss, 'training', summary_writer)
                # Restore state of the random number generator
                np.random.set_state(rng_state)
  
                if (epoch % FLAGS.checkpoint_period == 0) or (epoch==FLAGS.max_nrof_epochs-1):
                  # Save the model checkpoint
                  print('Saving checkpoint')
                  checkpoint_path = os.path.join(model_dir, 'model.ckpt')
                  saver.save(sess, checkpoint_path, global_step=step)
Esempio n. 7
0
def main(argv=None):  # pylint: disable=unused-argument
    if FLAGS.model_name:
        subdir = FLAGS.model_name
        preload_model = True
    else:
        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        preload_model = False
    log_dir = os.path.join(FLAGS.logs_base_dir, subdir)
    model_dir = os.path.join(FLAGS.models_base_dir, subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.mkdir(model_dir)

    np.random.seed(seed=FLAGS.seed)
    dataset = facenet.get_dataset(FLAGS.data_dir)
    train_set, validation_set = facenet.split_dataset(dataset, FLAGS.train_set_fraction)

    with tf.Graph().as_default():
        tf.set_random_seed(FLAGS.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3),
                                            name='Input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=phase_train_placeholder)

        # Split example embeddings into anchor, positive and negative
        anchor, positive, negative = tf.split(0, 3, embeddings)

        # Calculate triplet loss
        loss = facenet.triplet_loss(anchor, positive, negative)

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op, grads = facenet.train(loss, global_step)

        # Create a saver
        saver = tf.train.Saver(tf.all_variables(), max_to_keep=0)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        summary_writer = tf.train.SummaryWriter(log_dir, graph_def=sess.graph_def)

        with sess.as_default():

            if preload_model:
                ckpt = tf.train.get_checkpoint_state(model_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                else:
                    raise ValueError('Checkpoint not found')

            # Training and validation loop
            for epoch in range(FLAGS.max_nrof_epochs):
                # Train for one epoch
                step = train(sess, train_set, epoch, images_placeholder, phase_train_placeholder,
                             global_step, embeddings, loss, train_op, summary_op, summary_writer)
                # Validate epoch
                validate(sess, validation_set, epoch, images_placeholder, phase_train_placeholder,
                         global_step, embeddings, loss, train_op, summary_op, summary_writer)

                # Save the model checkpoint after each epoch
                print('Saving checkpoint')
                checkpoint_path = os.path.join(model_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                graphdef_dir = os.path.join(model_dir, 'graphdef')
                graphdef_filename = 'graph_def.pb'
                if (not os.path.exists(os.path.join(graphdef_dir, graphdef_filename))):
                    print('Saving graph definition')
                    tf.train.write_graph(sess.graph_def, graphdef_dir, graphdef_filename, False)
Esempio n. 8
0
def main(args):
  
    # 模型,定义在inception_resnet_v1 V2里(), --model_def models.inception_resnet_v1  
    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))
        
    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), 
            args.filter_percentile, args.filter_min_nrof_images_per_class)
        
    if args.validation_set_split_ratio>0.0:
        train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []
        
    nrof_classes = len(train_set)
    
    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)
        
        # Get a list of image paths and their labels
        # 训练数据
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list)>0, 'The training set should not be empty'
        
        # 测试数据
        val_image_list, val_label_list = facenet.get_image_paths_and_labels(val_set)

        # Create a queue that produces indices into the image_list and label_list 
        # tf.convert_to_tensor用于将不同数据变成张量:比如可以让数组变成张量、也可以让列表变成张量。
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        # 多线程读取数据,shuffle=True表示不是按顺序存储,可以随机获取,并一直循环。
        # https://blog.csdn.net/lyg5623/article/details/69387917
        index_queue = tf.train.range_input_producer(range_size, num_epochs=None,
                             shuffle=True, seed=None, capacity=32)
        
        # epoch 大数据时迭代完一轮时次数,少量数据应该epoch = 全部数据个数/batch
        index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue')
        
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
        control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
        
        nrof_preprocess_threads = 4
        input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                    dtypes=[tf.string, tf.int32, tf.int32],
                                    shapes=[(1,), (1,), (1,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')
        
        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))
        
        print('Building training graph')
        
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, 
            weight_decay=args.weight_decay)
        # 因为模型输出的(bottleneck_layer_size)没有计算最后一层(映射到图片类型),这里计算最后一层             
        logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, 
                weights_initializer=slim.initializers.xavier_initializer(), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                scope='Logits', reuse=False)

        # 按行进行泛化,行的平方求和再求平方根,得到的值按行除每个行的元素,对深度层面泛化? interface里最后一层输出为128个节点,slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, 
				#https://blog.csdn.net/abiggg/article/details/79368982
        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

				# 计算loss函数,当然还有其它训练参数也会加到这里来,通过比训练过程中一个weight加到正则化参数里来tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weight)
				#  模型中最后会把这个加到优化的loss中来。
				#L= L_softmax + λL_cneter = Softmax(W_i + b_yj) + λ1/2||f(x_i) - c_yj ||_2^2
				
        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1))
        # 模型中最后输出(bottleneck_layer_size每个类型的输出值的个数)的平均值加到正则化loss中,但prelogits_norm_loss_factor貌似为0
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor)

        # 计算中心损失及增加的正则化loss中
        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        
        # Calculate the average cross entropy loss across the batch
        # 计算预测损失,和上面框架的Softmax(W_i + b_yj) 
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch, logits=logits, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        # 预测损失平均值加到losses变量中
        tf.add_to_collection('losses', cross_entropy_mean)
        
        correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)
        
        #计算总损失,cross_entropy_mean + 前面增加的一些正则化损失(包括模型中增加的),通过tf.GraphKeys.REGULARIZATION_LOSSES获取出来
        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms)
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                saver.restore(sess, pretrained_model)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs*args.epoch_size
            nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs))   # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss': np.zeros((nrof_steps,), np.float32),
                'center_loss': np.zeros((nrof_steps,), np.float32),
                'reg_loss': np.zeros((nrof_steps,), np.float32),
                'xent_loss': np.zeros((nrof_steps,), np.float32),
                'prelogits_norm': np.zeros((nrof_steps,), np.float32),
                'accuracy': np.zeros((nrof_steps,), np.float32),
                'val_loss': np.zeros((nrof_val_samples,), np.float32),
                'val_xent_loss': np.zeros((nrof_val_samples,), np.float32),
                'val_accuracy': np.zeros((nrof_val_samples,), np.float32),
                'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32),
                'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32),
                'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_train': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_validate': np.zeros((args.max_nrof_epochs,), np.float32),
                'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32),
                'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32),
              }
            for epoch in range(1,args.max_nrof_epochs+1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                # 训练模型
                cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder,
                    learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, 
                    total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file,
                    stat, cross_entropy_mean, accuracy, learning_rate,
                    prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization)
                stat['time_train'][epoch-1] = time.time() - t
                
                if not cont:
                    break
                # 在测试数据上计算正确率  
                t = time.time()
                if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder,
                        phase_train_placeholder, batch_size_placeholder, 
                        stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization)
                stat['time_validate'][epoch-1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, 
                        embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, 
                        args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch-1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.items():
                        f.create_dataset(key, data=value)
    
    return model_dir