Esempio n. 1
0
    filter_count = 30
    order = 2
    top_k = 1

    length, height, top_left = get_length_height(region)
    print "区域(长度,宽度):", length, height

    # pmpt
    temp_data, time_slice, train, cluster_radius = init_data(time_slice, train, region, cluster_radius, filter_count)
    axis_pois, axis_users, train_structure_data, poi_adjacent_list, recommends, unknow_poi_set = preprocess(temp_data, time_slice, train, cluster_radius, order)
    tensor = trans(train_structure_data, poi_adjacent_list, order, len(axis_pois), len(axis_users), time_slice)
    U, S, D = HOSVD(numpy.array(tensor), 0.7)
    A = reconstruct(S, U)

    # factorized markov chain
    temp_data2, time_slice, train2 = init_data2(region, train, time_slice, filter_count)
    axis_pois2, axis_users2, train_structure_data2, recommends2, unknow_poi_set2 = preprocess2(temp_data2, time_slice, train2, order)
    A2 = trans2(train_structure_data2, order, len(axis_pois2), time_slice, 0.7)

    # tensor factorization
    temp_data3, time_slice, train3 = init_data3(time_slice, train, region, filter_count)
    axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3(temp_data3, time_slice, train3, order)
    tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice)
    U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7)
    A3 = reconstruct(S3, U3)

    x_values = []
    y_values1 = []
    y_values2 = []
    y_values3 = []
    y_values4 = []
Esempio n. 2
0
    length, height, top_left = get_length_height(region)
    print "区域(长度,宽度):", length, height

    # pmpt
    temp_data, time_slice, train, cluster_radius = init_data(
        time_slice, train, region, cluster_radius, filter_count)
    axis_pois, axis_users, train_structure_data, poi_adjacent_list, recommends, unknow_poi_set = preprocess(
        temp_data, time_slice, train, cluster_radius, order)
    tensor = trans(train_structure_data, poi_adjacent_list, order,
                   len(axis_pois), len(axis_users), time_slice)
    U, S, D = HOSVD(numpy.array(tensor), 0.7)
    A = reconstruct(S, U)

    # factorized markov chain
    temp_data2, time_slice, train2 = init_data2(region, train, time_slice,
                                                filter_count)
    axis_pois2, axis_users2, train_structure_data2, recommends2, unknow_poi_set2 = preprocess2(
        temp_data2, time_slice, train2, order)
    A2 = trans2(train_structure_data2, order, len(axis_pois2), time_slice, 0.7)

    # tensor factorization
    temp_data3, time_slice, train3 = init_data3(time_slice, train, region,
                                                filter_count)
    axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3(
        temp_data3, time_slice, train3, order)
    tensor3 = trans3(train_structure_data3, order, len(axis_pois3),
                     len(axis_users3), time_slice)
    U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7)
    A3 = reconstruct(S3, U3)

    x_values = []