Esempio n. 1
0
def isDivisible(n, divisors):
  for x in divisors:
    if n % x != 0:
      return False

  if not divisors:
    raise ValueError("Must provide at least one divisor!")

  return True

if __name__ == "__main__":
  divisors = [x for x in range(20, 1, -1)]

  for x in divisors[:]:
    for y in factorise(x):
      if x != y and y in divisors:
        divisors.remove(y)

  prime_product = 1
  for x in sieve(max(divisors)):
    if x in divisors:
      prime_product *= x

  n = prime_product
  while not isDivisible(n, divisors):
    n += prime_product

  print(n)

Esempio n. 2
0
#! /usr/bin/python3

import sys, os
sys.path.insert(0, os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../Problem 005')))

from factors import factorise

if __name__ == "__main__":
  i = 1
  tri = 0
  divisors = []

  while len(divisors) <= 500:
    tri += i
    divisors = factorise(tri)
    i += 1

  print(tri)

Esempio n. 3
0
 def test_one(self):
     self.assertEqual(factorise(1), [1])
Esempio n. 4
0
 def test_square(self):
     self.assertEqual(factorise(4), [1, 2, 4])
Esempio n. 5
0
 def test_composite(self):
     self.assertEqual(factorise(6), [1, 2, 3, 6])
Esempio n. 6
0
 def test_two(self):
     self.assertEqual(factorise(2), [1, 2])