Esempio n. 1
0
class ANOVA3nested(ANOVA3):
    def __init__(self, A, B, C):
        self.X = None
        self.A = Factor(A)
        self.B = FactorNested(B, self.A)
        self.C = FactorNested2(C, self.B)
        self.J = self.A.J
        self.contrasts = None
        self.term_labels = ['Intercept', 'A', 'B', 'C']
        self.f_terms = [('A', 'B'), ('B', 'C'), ('C', 'Error')]
        self._check_balanced()
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        XB = self.B.get_design_main()
        XC = self.C.get_design_main()
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(labels=['Intercept', 'A', 'B', 'C'])
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        builder.add_main_columns('B', XB)
        builder.add_main_columns('C', XC)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()

    def _check_balanced(self):
        if not (self.A.balanced and self.B.balanced and self.C.balanced):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced_nested3(self.B, self.C):
            raise (ValueError('Design must be balanced.'))
Esempio n. 2
0
class ANOVA3nested(ANOVA3):
	def __init__(self, A, B, C):
		self.X          = None
		self.A          = Factor(A)
		self.B          = FactorNested(B, self.A)
		self.C          = FactorNested2(C, self.B)
		self.J          = self.A.J
		self.contrasts  = None
		self.term_labels = ['Intercept', 'A', 'B', 'C']
		self.f_terms     = [('A','B'), ('B','C'), ('C','Error')]
		self._check_balanced()
		self._assemble()

	def _assemble(self):
		### assemble design matrix columns:
		XCONST         = self._get_column_const()
		XA             = self.A.get_design_main()
		XB             = self.B.get_design_main()
		XC             = self.C.get_design_main()
		### specify builder and add design matrix columns:
		builder          = DesignBuilder(labels=['Intercept', 'A', 'B', 'C'])
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A',  XA)
		builder.add_main_columns('B',  XB)
		builder.add_main_columns('C',  XC)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()

	def _check_balanced(self):
		if not (self.A.balanced and self.B.balanced and self.C.balanced):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced_nested3(self.B, self.C):
			raise( ValueError('Design must be balanced.') )
Esempio n. 3
0
def parse_config(config, warning=False):

    independent_variables = config.get('independentVariables', None)
    assert independent_variables, "Independent variables field can not be None"

    parsed_config = {}

    # parse independent variables
    for variable_name in independent_variables:
        try:
            factor_type = independent_variables[variable_name]['design']
            factors_list = parsed_config.get(factor_type, [])

            if factor_type == FactorType.between_subject.name:
                factors_list += [
                    Factor(
                        name=variable_name,
                        levels=independent_variables[variable_name]['levels'],
                        design=FactorType.between_subject.name)
                ]
            elif factor_type == FactorType.within_subject.name:
                factors_list += [
                    Factor(
                        name=variable_name,
                        levels=independent_variables[variable_name]['levels'],
                        design=FactorType.within_subject.name,
                        order=independent_variables[variable_name]['order'])
                ]

            parsed_config[factor_type] = factors_list

        except Exception as e:
            print(e)

    return parsed_config
Esempio n. 4
0
 def __init__(self, A):
     self.X = None  #design matrix
     self.A = Factor(A)  #factor levels
     self.J = self.A.J  #number of observations
     self.contrasts = None  #contrast matrix
     self.term_labels = ['Intercept', 'A']
     self.f_terms = [('A', 'Error')]
     self._assemble()
 def test_set_amount_quantiles(self):
     message = "incorrect amount quantiles for {}"
     db_teach = pd.DataFrame({"amount": [100, 50, 80, 30, 20, 40, 50]})
     db_test = pd.DataFrame({"amount": [35, 20.5, 120, 0.2]})
     Factor.set_amount_quantiles(db_teach, db_test)
     self.assertListEqual(list(db_teach.amount_quntile.values),
                          [6, 4, 5, 2, 1, 3, 4], message.format('teach'))
     self.assertListEqual(list(db_test.amount_quntile.values), [3, 1, 6, 1],
                          message.format('test'))
Esempio n. 6
0
	def __init__(self, A, SUBJ):
		self.X          = None          #design matrix
		self.S          = Factor(SUBJ)  #subjects
		self.A          = Factor(A)     #factor levels
		self.J          = self.A.J      #number of observations
		self.contrasts  = None          #contrast matrix
		self.term_labels = ['Intercept', 'A', 'S', 'SA']
		self.f_terms     = [('A','SA')]
		self._check_balanced()
		self._assemble()
Esempio n. 7
0
 def __init__(self, A, SUBJ):
     self.X = None  #design matrix
     self.S = Factor(SUBJ)  #subjects
     self.A = Factor(A)  #factor levels
     self.J = self.A.J  #number of observations
     self.contrasts = None  #contrast matrix
     self.term_labels = ['Intercept', 'A', 'S', 'SA']
     self.f_terms = [('A', 'SA')]
     self._check_balanced()
     self._assemble()
Esempio n. 8
0
 def __init__(self, A, B):
     self.X = None
     self.A = Factor(A)
     self.B = FactorNested(B, self.A)
     self.J = self.A.J
     self.contrasts = None
     self.term_labels = ['Intercept', 'A', 'B']
     self.f_terms = [('A', 'B'), ('B', 'Error')]
     self._check_balanced()
     self._assemble()
Esempio n. 9
0
 def __init__(self, A, B):
     self.X = None  #design matrix
     self.A = Factor(A)  #factor level vector
     self.B = Factor(B)  #factor level vector
     self.J = self.A.J  #number of observations
     self.contrasts = None
     self.balanced = True
     self.term_labels = ['Intercept', 'A', 'B', 'AB']
     self.f_terms = [('A', 'Error'), ('B', 'Error'), ('AB', 'Error')]
     self._check_balanced()
     self._assemble()
Esempio n. 10
0
class ANOVA3onerm(ANOVA3rm):
    '''Only C is an RM factor.'''
    def __init__(self, A, B, C, SUBJ):
        self.X = None
        self.A = Factor(A)
        self.B = Factor(B)
        self.C = Factor(C)
        self.S = FactorNestedTwoWay(SUBJ, self.A, self.B)
        # self.S           = FactorNestedTwoWay(SUBJ, self.B, self.C)
        self.J = self.A.J
        self.contrasts = None
        self.term_labels = [
            'Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC', 'S', 'SC'
        ]
        self.f_terms = [('A', 'S'), ('B', 'S'), ('C', 'SC'), ('AB', 'S'),
                        ('AC', 'SC'), ('BC', 'SC'), ('ABC', 'SC')]
        self._check_balanced()
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        XB = self.B.get_design_main()
        XC = self.C.get_design_main()
        XS = self.S.get_design_main()
        XAB = self.A.get_design_interaction(self.B)
        XAC = self.A.get_design_interaction(self.C)
        XBC = self.B.get_design_interaction(self.C)
        XABC = self.C.get_design_interaction_3way(self.A, self.B)
        XSC = self.S.get_design_interaction(self.C)
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(labels=self.term_labels)
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        builder.add_main_columns('B', XB)
        builder.add_main_columns('C', XC)
        builder.add_main_columns('AB', XAB)
        builder.add_main_columns('AC', XAC)
        builder.add_main_columns('BC', XBC)
        builder.add_main_columns('ABC', XABC)
        builder.add_main_columns('S', XS)
        builder.add_main_columns('SC', XSC)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()

    def _check_balanced(self):
        if not (self.A.balanced and self.B.balanced and self.C.balanced
                and self.S.balanced):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.B):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
        if not self.B.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
        if not self.S.check_balanced_rm(self.C):
            raise (ValueError('Design must be balanced.'))
Esempio n. 11
0
 def __init__(self, A, B, SUBJ):
     self.X = None
     self.A = Factor(A)
     self.B = Factor(B)
     self.S = FactorNested(SUBJ, self.A)
     self.J = self.A.J
     self.contrasts = None
     self.term_labels = ['Intercept', 'A', 'B', 'S', 'AB', 'SB']
     self.f_terms = [('A', 'S'), ('B', 'SB'), ('AB', 'SB')]
     # self._check_balanced()
     self._assemble()
Esempio n. 12
0
	def __init__(self, A, B, C):
		self.X          = None       #design matrix
		self.A          = Factor(A)  #factor level vector
		self.B          = Factor(B)  #factor level vector
		self.C          = Factor(C)  #factor level vector
		self.J          = self.A.J   #number of observations
		self.term_labels = ['Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC']
		self.f_terms     = [('A','Error'), ('B','Error'), ('C','Error'), ('AB','Error'), ('AC','Error'), ('BC','Error'), ('ABC','Error')]
		self.contrasts  = None
		self._check_balanced()
		self._assemble()
Esempio n. 13
0
	def __init__(self, A, B, SUBJ):
		self.X           = None
		self.A           = Factor(A)
		self.B           = Factor(B)
		self.S           = FactorNested(SUBJ, self.A)
		self.J           = self.A.J
		self.contrasts   = None
		self.term_labels = ['Intercept', 'A', 'B', 'S', 'AB', 'SB']
		self.f_terms     = [('A','S'), ('B','SB'), ('AB','SB')]
		# self._check_balanced()
		self._assemble()
Esempio n. 14
0
	def __init__(self, A, B, C, SUBJ):
		self.X          = None
		self.A           = Factor(A)
		self.B           = Factor(B)
		self.C           = Factor(C)
		self.S           = Factor(SUBJ)
		self.J           = self.A.J
		self.contrasts   = None
		self.term_labels = ['Intercept',  'A','B','C','S',  'AB','AC','BC',   'SA','SB','SC',   'SAB','SAC','SBC',  'ABC', 'SABC']
		self.f_terms     = [('A','SA'), ('B','SB'), ('C','SC'),  ('AB','SAB'), ('AC','SAC'), ('BC','SBC'), ('ABC','SABC')]
		self._check_balanced()
		self._assemble()
Esempio n. 15
0
class ANOVA3onerm(ANOVA3rm):
	'''Only C is an RM factor.'''
	def __init__(self, A, B, C, SUBJ):
		self.X           = None
		self.A           = Factor(A)
		self.B           = Factor(B)
		self.C           = Factor(C)
		self.S           = FactorNestedTwoWay(SUBJ, self.A, self.B)
		# self.S           = FactorNestedTwoWay(SUBJ, self.B, self.C)
		self.J           = self.A.J
		self.contrasts   = None
		self.term_labels = ['Intercept',  'A','B','C', 'AB','AC','BC',    'ABC', 'S', 'SC']
		self.f_terms     = [('A','S'), ('B','S'), ('C','SC'),  ('AB','S'), ('AC','SC'), ('BC','SC'), ('ABC','SC')]
		self._check_balanced()
		self._assemble()


	def _assemble(self):
		### assemble design matrix columns:
		XCONST          = self._get_column_const()
		XA              = self.A.get_design_main()
		XB              = self.B.get_design_main()
		XC              = self.C.get_design_main()
		XS              = self.S.get_design_main()
		XAB             = self.A.get_design_interaction(self.B)
		XAC             = self.A.get_design_interaction(self.C)
		XBC             = self.B.get_design_interaction(self.C)
		XABC            = self.C.get_design_interaction_3way(self.A, self.B)
		XSC             = self.S.get_design_interaction(self.C)
		### specify builder and add design matrix columns:
		builder           = DesignBuilder(labels=self.term_labels)
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A', XA)
		builder.add_main_columns('B', XB)
		builder.add_main_columns('C', XC)
		builder.add_main_columns('AB', XAB)
		builder.add_main_columns('AC', XAC)
		builder.add_main_columns('BC', XBC)
		builder.add_main_columns('ABC', XABC)
		builder.add_main_columns('S', XS)
		builder.add_main_columns('SC', XSC)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()

	def _check_balanced(self):
		if not (self.A.balanced and self.B.balanced and self.C.balanced and self.S.balanced):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.B):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
		if not self.B.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
		if not self.S.check_balanced_rm(self.C):
			raise( ValueError('Design must be balanced.') )
Esempio n. 16
0
class ANOVA1rm(_Design):
    def __init__(self, A, SUBJ):
        self.X = None  #design matrix
        self.S = Factor(SUBJ)  #subjects
        self.A = Factor(A)  #factor levels
        self.J = self.A.J  #number of observations
        self.contrasts = None  #contrast matrix
        self.term_labels = ['Intercept', 'A', 'S', 'SA']
        self.f_terms = [('A', 'SA')]
        self._check_balanced()
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        XS = self.S.get_design_main()
        XSA = self.A.get_design_interaction(self.S)
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(labels=self.term_labels)
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        builder.add_main_columns('S', XS)
        builder.add_main_columns('SA', XSA)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()

    def _check_balanced(self):
        if not (self.A.balanced and self.S.balanced):
            raise (ValueError('Design must be balanced.'))
        if not self.S.check_balanced(self.A):
            raise (ValueError('Design must be balanced.'))

    def check_for_single_responses(self):
        A, S = self.A.A, self.S.A
        only_single = False
        for a in self.A.u:
            s = S[(A == a)]
            if np.unique(s).size == s.size:
                only_single = True
                warnings.warn(
                    '\nWARNING:  Only one observation per subject found.  Residuals and inference will be approximate. To avoid approximate residuals: (a) Add multiple observations per subject and per condition, and (b) ensure that all subjects and conditions have the same number of observations.\n',
                    UserWarning,
                    stacklevel=2)
                continue
        return only_single
Esempio n. 17
0
class ANOVA3(_Design):
    def __init__(self, A, B, C):
        self.X = None  #design matrix
        self.A = Factor(A)  #factor level vector
        self.B = Factor(B)  #factor level vector
        self.C = Factor(C)  #factor level vector
        self.J = self.A.J  #number of observations
        self.term_labels = [
            'Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC'
        ]
        self.f_terms = [('A', 'Error'), ('B', 'Error'), ('C', 'Error'),
                        ('AB', 'Error'), ('AC', 'Error'), ('BC', 'Error'),
                        ('ABC', 'Error')]
        self.contrasts = None
        self._check_balanced()
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        XB = self.B.get_design_main()
        XC = self.C.get_design_main()
        XAB = self.A.get_design_interaction(self.B)
        XAC = self.A.get_design_interaction(self.C)
        XBC = self.B.get_design_interaction(self.C)
        XABC = self.A.get_design_interaction_3way(self.B, self.C)
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(
            labels=['Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC'])
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        builder.add_main_columns('B', XB)
        builder.add_main_columns('C', XC)
        builder.add_main_columns('AB', XAB)
        builder.add_main_columns('AC', XAC)
        builder.add_main_columns('BC', XBC)
        builder.add_main_columns('ABC', XABC)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()

    def _check_balanced(self):
        if not (self.A.balanced and self.B.balanced and self.C.balanced):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.B):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
        if not self.B.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
Esempio n. 18
0
	def __init__(self, A):
		self.X           = None       #design matrix
		self.A           = Factor(A)  #factor levels
		self.J           = self.A.J   #number of observations
		self.contrasts   = None       #contrast matrix
		self.term_labels = ['Intercept', 'A']
		self.f_terms     = [('A','Error')]
		self._assemble()
Esempio n. 19
0
class ANOVA1rm(_Design):
	def __init__(self, A, SUBJ):
		self.X          = None          #design matrix
		self.S          = Factor(SUBJ)  #subjects
		self.A          = Factor(A)     #factor levels
		self.J          = self.A.J      #number of observations
		self.contrasts  = None          #contrast matrix
		self.term_labels = ['Intercept', 'A', 'S', 'SA']
		self.f_terms     = [('A','SA')]
		self._check_balanced()
		self._assemble()


	def _assemble(self):
		### assemble design matrix columns:
		XCONST         = self._get_column_const()
		XA             = self.A.get_design_main()
		XS             = self.S.get_design_main()
		XSA            = self.A.get_design_interaction(self.S)
		### specify builder and add design matrix columns:
		builder        = DesignBuilder(labels=self.term_labels)
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A', XA)
		builder.add_main_columns('S', XS)
		builder.add_main_columns('SA', XSA)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()

	def _check_balanced(self):
		if not (self.A.balanced and self.S.balanced):
			raise( ValueError('Design must be balanced.') )
		if not self.S.check_balanced(self.A):
			raise( ValueError('Design must be balanced.') )

	def check_for_single_responses(self):
		A,S  = self.A.A, self.S.A
		only_single = False
		for a in self.A.u:
			s = S[(A==a)]
			if np.unique(s).size == s.size:
				only_single = True
				warnings.warn('\nWARNING:  Only one observation per subject found.  Residuals and inference will be approximate. To avoid approximate residuals: (a) Add multiple observations per subject and per condition, and (b) ensure that all subjects and conditions have the same number of observations.\n', UserWarning, stacklevel=2)
				continue
		return only_single
Esempio n. 20
0
	def __init__(self, A, B):
		self.X          = None
		self.A          = Factor(A)
		self.B          = FactorNested(B, self.A)
		self.J          = self.A.J
		self.contrasts  = None
		self.term_labels = ['Intercept', 'A', 'B']
		self.f_terms     = [('A','B'), ('B','Error')]
		self._check_balanced()
		self._assemble()
Esempio n. 21
0
 def setup_factors(self, node, parent_idx, cpds):
     if node is None:
         return
     self.setup_factors(node.left, node.idx, cpds)
     self.setup_factors(node.right, node.idx, cpds)
     node.factor = Factor(scope=[node.idx, parent_idx],
                          card=[4, 4],
                          val=cpds,
                          name="F({0},{1})".format(node.idx, parent_idx),
                          logfactor=self.use_logspace)
Esempio n. 22
0
 def __init__(self, root, prior, cpds, use_logspace=False):
     self.use_logspace = use_logspace
     self.root = root
     self.root.factor = Factor(scope=[root.idx],
                               card=[4],
                               val=prior,
                               name="RootPrior",
                               logfactor=self.use_logspace)
     self.setup_factors(root.left, root.idx, cpds)
     self.setup_factors(root.right, root.idx, cpds)
Esempio n. 23
0
class ANOVA3(_Design):
	def __init__(self, A, B, C):
		self.X          = None       #design matrix
		self.A          = Factor(A)  #factor level vector
		self.B          = Factor(B)  #factor level vector
		self.C          = Factor(C)  #factor level vector
		self.J          = self.A.J   #number of observations
		self.term_labels = ['Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC']
		self.f_terms     = [('A','Error'), ('B','Error'), ('C','Error'), ('AB','Error'), ('AC','Error'), ('BC','Error'), ('ABC','Error')]
		self.contrasts  = None
		self._check_balanced()
		self._assemble()

	def _assemble(self):
		### assemble design matrix columns:
		XCONST         = self._get_column_const()
		XA             = self.A.get_design_main()
		XB             = self.B.get_design_main()
		XC             = self.C.get_design_main()
		XAB            = self.A.get_design_interaction(self.B)
		XAC            = self.A.get_design_interaction(self.C)
		XBC            = self.B.get_design_interaction(self.C)
		XABC           = self.A.get_design_interaction_3way(self.B, self.C)
		### specify builder and add design matrix columns:
		builder        = DesignBuilder(labels=['Intercept', 'A', 'B', 'C', 'AB', 'AC', 'BC', 'ABC'])
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A',  XA)
		builder.add_main_columns('B',  XB)
		builder.add_main_columns('C',  XC)
		builder.add_main_columns('AB', XAB)
		builder.add_main_columns('AC', XAC)
		builder.add_main_columns('BC', XBC)
		builder.add_main_columns('ABC', XABC)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()


	def _check_balanced(self):
		if not (self.A.balanced and self.B.balanced and self.C.balanced):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.B):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
		if not self.B.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
Esempio n. 24
0
 def __init__(self, A, B, C, SUBJ):
     self.X = None
     self.A = Factor(A)
     self.B = Factor(B)
     self.C = Factor(C)
     self.S = Factor(SUBJ)
     self.J = self.A.J
     self.contrasts = None
     self.term_labels = [
         'Intercept', 'A', 'B', 'C', 'S', 'AB', 'AC', 'BC', 'SA', 'SB',
         'SC', 'SAB', 'SAC', 'SBC', 'ABC', 'SABC'
     ]
     self.f_terms = [('A', 'SA'), ('B', 'SB'), ('C', 'SC'), ('AB', 'SAB'),
                     ('AC', 'SAC'), ('BC', 'SBC'), ('ABC', 'SABC')]
     self._check_balanced()
     self._assemble()
Esempio n. 25
0
class ANOVA1(_Design):
    def __init__(self, A):
        self.X = None  #design matrix
        self.A = Factor(A)  #factor levels
        self.J = self.A.J  #number of observations
        self.contrasts = None  #contrast matrix
        self.term_labels = ['Intercept', 'A']
        self.f_terms = [('A', 'Error')]
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(labels=self.term_labels)
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()
Esempio n. 26
0
class ANOVA1(_Design):
	def __init__(self, A):
		self.X           = None       #design matrix
		self.A           = Factor(A)  #factor levels
		self.J           = self.A.J   #number of observations
		self.contrasts   = None       #contrast matrix
		self.term_labels = ['Intercept', 'A']
		self.f_terms     = [('A','Error')]
		self._assemble()
		
	

	def _assemble(self):
		### assemble design matrix columns:
		XCONST         = self._get_column_const()
		XA             = self.A.get_design_main()
		### specify builder and add design matrix columns:
		builder        = DesignBuilder(labels=self.term_labels)
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A', XA)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()
Esempio n. 27
0
def constructFactorGraph(yTilde, H, epsilon):
    '''
    :param - yTilde: observed codeword
        type: numpy.ndarray containing 0's and 1's
        shape: 2N
    :param - H parity check matrix
             type: numpy.ndarray
             shape: N x 2N
    :param epsilon - the probability that each bit is flipped to its complement

    return G factorGraph

    You should consider two kinds of factors:
    - M unary factors
    - N each parity check factors
    '''
    N = H.shape[0]
    M = H.shape[1]
    G = FactorGraph(numVar=M, numFactor=N+M)
    G.var = range(M)
    ##############################################################
    # Q1
    # TODO: your code starts here
    # Add unary factors
    for variable_Y in range(M):
        if(yTilde[variable_Y,0] == 0):
            G.factors.append(Factor(scope = [variable_Y], card = [2], val =np.array([1-epsilon, epsilon]), name="Variable_Y_"+str(variable_Y)))
            Factorfs = variable_Y
            G.factorToVar[Factorfs].append(variable_Y)
            G.varToFactor[variable_Y].append(Factorfs)
        else:
            G.factors.append(Factor(scope = [variable_Y], card = [2], val= np.array([epsilon, 1-epsilon]), name="Variable_Y_"+str(variable_Y)))
            Factorfs = variable_Y
            G.factorToVar[Factorfs].append(variable_Y)
            G.varToFactor[variable_Y].append(Factorfs)
            #Here, the index of factors are the same to index of variables since these are individual factors
        
      
    Factors =[]
    for i in range(N):
        H_p = H[i]
        related_variables = []
        cardinalities=[]
        Factorfs = M + i
        for variable in range(M):
            if(H_p[variable] == 1):
                cardinalities.append(2)
                related_variables.append(variable)
                G.varToFactor[variable].append(Factorfs)        
        #adding These new factors: P
        G.factorToVar[Factorfs] = related_variables
        codeword_size = len(cardinalities)
        values = np.zeros((cardinalities))
        for codeword in itertools.product([0, 1], repeat=codeword_size):
            parity = int(sum(codeword) - 2* int(sum(codeword)/2))
            if(parity == 1):
                values[codeword] = 0.0
            if(parity == 0):
                values[codeword] = 1.0

        #print("asghar")
        #print(values.flat)
        Factors.append(Factor(scope=related_variables, card=cardinalities, val=values, name="P_"+str(i)))


    G.factors = G.factors + Factors


    ##############################################################
    return G
Esempio n. 28
0
class ANOVA3rm(ANOVA3):
	'''A, B and C are all RM factors.'''
	def __init__(self, A, B, C, SUBJ):
		self.X          = None
		self.A           = Factor(A)
		self.B           = Factor(B)
		self.C           = Factor(C)
		self.S           = Factor(SUBJ)
		self.J           = self.A.J
		self.contrasts   = None
		self.term_labels = ['Intercept',  'A','B','C','S',  'AB','AC','BC',   'SA','SB','SC',   'SAB','SAC','SBC',  'ABC', 'SABC']
		self.f_terms     = [('A','SA'), ('B','SB'), ('C','SC'),  ('AB','SAB'), ('AC','SAC'), ('BC','SBC'), ('ABC','SABC')]
		self._check_balanced()
		self._assemble()


	def _assemble(self):
		### assemble design matrix columns:
		XCONST          = self._get_column_const()
		XA              = self.A.get_design_main()
		XB              = self.B.get_design_main()
		XC              = self.C.get_design_main()
		XS              = self.S.get_design_main()
		XAB             = self.A.get_design_interaction(self.B)
		XAC             = self.A.get_design_interaction(self.C)
		XBC             = self.B.get_design_interaction(self.C)
		XSA             = self.S.get_design_interaction(self.A)
		XSB             = self.S.get_design_interaction(self.B)
		XSC             = self.S.get_design_interaction(self.C)
		XSAB            = self.S.get_design_interaction_3way(self.A, self.B)
		XSAC            = self.S.get_design_interaction_3way(self.A, self.C)
		XSBC            = self.S.get_design_interaction_3way(self.B, self.C)
		XABC            = self.A.get_design_interaction_3way(self.B, self.C)
		XSABC           = self.S.get_design_interaction_4way(self.A, self.B, self.C)
		### specify builder and add design matrix columns:
		builder           = DesignBuilder(labels=self.term_labels)
		builder.add_main_columns('Intercept', XCONST)
		builder.add_main_columns('A', XA)
		builder.add_main_columns('B', XB)
		builder.add_main_columns('C', XC)
		builder.add_main_columns('S', XS)
		builder.add_main_columns('AB', XAB)
		builder.add_main_columns('AC', XAC)
		builder.add_main_columns('BC', XBC)
		builder.add_main_columns('SA', XSA)
		builder.add_main_columns('SB', XSB)
		builder.add_main_columns('SC', XSC)
		builder.add_main_columns('SAB', XSAB)
		builder.add_main_columns('SAC', XSAC)
		builder.add_main_columns('SBC', XSBC)
		builder.add_main_columns('ABC', XABC)
		builder.add_main_columns('SABC', XSABC)
		### assemble design matrix and contrasts:
		self.X         = builder.get_design_matrix()
		self.contrasts = builder.get_contrasts()

	def _swapAB(self):
		if self._swap:
			A,B         = self.B, self.A
			self.A      = A
			self.B      = B

	def _check_balanced(self):
		if not (self.A.balanced and self.B.balanced and self.C.balanced and self.S.balanced):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.B):
			raise( ValueError('Design must be balanced.') )
		if not self.A.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
		if not self.B.check_balanced(self.C):
			raise( ValueError('Design must be balanced.') )
		if not self.S.check_balanced_rm(self.C):
			raise( ValueError('Design must be balanced.') )


	def check_for_single_responses(self):
		A,B,C,S  = self.A.A, self.B.A, self.C.A, self.S.A
		only_single = False
		for a in self.A.u:
			for b in self.B.u:
				for c in self.C.u:
					s = S[(A==a) & (B==b) & (C==c)]
					if np.unique(s).size == s.size:
						only_single = True
						warnings.warn('\nWARNING:  Only one observation per subject found.  Residuals and inference will be approximate. To avoid approximate residuals: (a) Add multiple observations per subject and per condition, and (b) ensure that all subjects and conditions have the same number of observations.\n', UserWarning, stacklevel=2)
						continue
		return only_single
Esempio n. 29
0
 def setUp(self):
     self.factor = Factor()
     self.db_teach_factor = DataForTests.db_teach_factor
Esempio n. 30
0
class TestFactor(unittest.TestCase):
    def setUp(self):
        self.factor = Factor()
        self.db_teach_factor = DataForTests.db_teach_factor

    def test_get_is_zip_digit(self):
        result = self.factor.is_only_digit(self.db_teach_factor)
        result = result.tolist()
        self.assertListEqual(result, [1, 1, 0, 1, 0, 1, 0, 0, 1, 1],
                             'incorrect default data')

    def test_get_encode_length(self):
        result = self.factor.encode_length(self.db_teach_factor,
                                           encode={
                                               'unknown': 0,
                                               'other': 0,
                                               '10': 1
                                           })
        result = result.tolist()
        self.assertListEqual(result, [0, 1, 1, 0, 0, 0, 0, 0, 1, 0],
                             'incorrect default data')

    def test_get_encode_length_2(self):
        result = self.factor.encode_length(self.db_teach_factor,
                                           encode={
                                               'unknown': 3,
                                               'other': 0,
                                               '10': 1
                                           })
        result = result.tolist()
        self.assertListEqual(result, [0, 1, 1, 0, 0, 3, 0, 0, 1, 0],
                             'incorrect default data')

    def test_get_encode_length_3(self):
        result = self.factor.encode_length(self.db_teach_factor,
                                           encode={
                                               'unknown': 3,
                                               'other': 5,
                                               '10': 0
                                           })
        result = result.tolist()
        self.assertListEqual(result, [5, 0, 0, 5, 5, 3, 5, 5, 0, 5],
                             'incorrect default data')

    def test_get_network(self):
        result = self.factor.get_network(self.db_teach_factor)
        result = result.tolist()
        expected_ip = [
            '184.56.163', '204.210.126', '99.203.145', '69.181.49',
            '179.158.244', '166.137.175', '172.58.11', '174.202.7',
            '99.177.243', '73.108.11'
        ]
        self.assertListEqual(result, expected_ip, 'incorrect default data')

    def test_get_bin(self):
        result = self.factor.get_bin(self.db_teach_factor)
        result = result.tolist()
        expected_bin = [
            '547087', '517148', '546540', '510805', '544731', '524038',
            '551791', '517805', '517805', '517805'
        ]
        self.assertListEqual(result, expected_bin, 'incorrect default data')

    def test_get_first_name(self):
        result = self.factor.get_first_name(self.db_teach_factor)
        result = result.tolist()
        expected_first_name = [
            'Gabriele', 'Malia', 'Stephen', 'Nicholas', 'Thiago', 'Jamal',
            'Jorge', 'Joseph', 'thomas', 'Micah'
        ]
        self.assertListEqual(result, expected_first_name,
                             'incorrect default data')

    def test_get_last_name(self):
        result = self.factor.get_last_name(self.db_teach_factor)
        result = result.tolist()
        expected_last_name = [
            'Markes', 'Gusman', 'Gordy', 'Saephanh', 'Fernandes', 'Stephens',
            'Hernandez', 'Rusolo', 'van', 'Pitchford'
        ]
        self.assertListEqual(result, expected_last_name,
                             'incorrect default data')

    def test_get_domain(self):
        result = self.factor.get_domain(self.db_teach_factor)
        result = result.tolist()
        expected_domain = [
            'markes.com', '4mail.com.net', '4roll.mail', 'gmail.com',
            'pochta.net', 'yandex.com', 'gmail.com', '4null.com.ua',
            'hotmail.com', 'mail.ru'
        ]
        self.assertListEqual(result, expected_domain, 'incorrect default data')

    def test_get_last_domain_zone(self):
        result = self.factor.get_last_domain_zone(self.db_teach_factor)
        result = result.tolist()
        expected_last_dz = [
            'com', 'net', 'mail', 'com', 'net', 'com', 'com', 'ua', 'com', 'ru'
        ]
        self.assertListEqual(result, expected_last_dz,
                             'incorrect default data')

    def test_get_count_words_in_column(self):
        result = self.factor.get_count_words_in_column(self.db_teach_factor)
        result = result.tolist()
        self.assertListEqual(result, [3, 2, 3, 2, 2, 2, 5, 2, 3, 2],
                             'incorrect default data')

    def test_get_phone_2(self):
        result = self.factor.get_phone_2(self.db_teach_factor)
        result = result.tolist()
        expected_phone_2 = [
            '13', '10', '10', '11', '97', '', '71', '83', '10', '12'
        ]
        self.assertListEqual(result, expected_phone_2,
                             'incorrect default data')

    # @unittest.skip("demonstrating skipping")
    def test_get_phone_3(self):
        result = self.factor.get_phone_3(self.db_teach_factor)
        result = result.tolist()
        expected_phone_3 = [
            '135', '108', '100', '119', '977', '', '718', '832', '106', '128'
        ]
        self.assertListEqual(result, expected_phone_3,
                             'incorrect default data')

    def test_get_quantile(self):
        message = "incorrect interval for {}"
        q_amount = [0, 0.3, 0.8, 0.9]
        x = get_quantile(0.2, q_amount)
        self.assertEqual(x, 1, message.format(x))

        x = get_quantile(0.95, q_amount)
        self.assertEqual(x, 4, message.format(x))

    def test_set_amount_quantiles(self):
        message = "incorrect amount quantiles for {}"
        db_teach = pd.DataFrame({"amount": [100, 50, 80, 30, 20, 40, 50]})
        db_test = pd.DataFrame({"amount": [35, 20.5, 120, 0.2]})
        Factor.set_amount_quantiles(db_teach, db_test)
        self.assertListEqual(list(db_teach.amount_quntile.values),
                             [6, 4, 5, 2, 1, 3, 4], message.format('teach'))
        self.assertListEqual(list(db_test.amount_quntile.values), [3, 1, 6, 1],
                             message.format('test'))
Esempio n. 31
0
class ANOVA3rm(ANOVA3):
    '''A, B and C are all RM factors.'''
    def __init__(self, A, B, C, SUBJ):
        self.X = None
        self.A = Factor(A)
        self.B = Factor(B)
        self.C = Factor(C)
        self.S = Factor(SUBJ)
        self.J = self.A.J
        self.contrasts = None
        self.term_labels = [
            'Intercept', 'A', 'B', 'C', 'S', 'AB', 'AC', 'BC', 'SA', 'SB',
            'SC', 'SAB', 'SAC', 'SBC', 'ABC', 'SABC'
        ]
        self.f_terms = [('A', 'SA'), ('B', 'SB'), ('C', 'SC'), ('AB', 'SAB'),
                        ('AC', 'SAC'), ('BC', 'SBC'), ('ABC', 'SABC')]
        self._check_balanced()
        self._assemble()

    def _assemble(self):
        ### assemble design matrix columns:
        XCONST = self._get_column_const()
        XA = self.A.get_design_main()
        XB = self.B.get_design_main()
        XC = self.C.get_design_main()
        XS = self.S.get_design_main()
        XAB = self.A.get_design_interaction(self.B)
        XAC = self.A.get_design_interaction(self.C)
        XBC = self.B.get_design_interaction(self.C)
        XSA = self.S.get_design_interaction(self.A)
        XSB = self.S.get_design_interaction(self.B)
        XSC = self.S.get_design_interaction(self.C)
        XSAB = self.S.get_design_interaction_3way(self.A, self.B)
        XSAC = self.S.get_design_interaction_3way(self.A, self.C)
        XSBC = self.S.get_design_interaction_3way(self.B, self.C)
        XABC = self.A.get_design_interaction_3way(self.B, self.C)
        XSABC = self.S.get_design_interaction_4way(self.A, self.B, self.C)
        ### specify builder and add design matrix columns:
        builder = DesignBuilder(labels=self.term_labels)
        builder.add_main_columns('Intercept', XCONST)
        builder.add_main_columns('A', XA)
        builder.add_main_columns('B', XB)
        builder.add_main_columns('C', XC)
        builder.add_main_columns('S', XS)
        builder.add_main_columns('AB', XAB)
        builder.add_main_columns('AC', XAC)
        builder.add_main_columns('BC', XBC)
        builder.add_main_columns('SA', XSA)
        builder.add_main_columns('SB', XSB)
        builder.add_main_columns('SC', XSC)
        builder.add_main_columns('SAB', XSAB)
        builder.add_main_columns('SAC', XSAC)
        builder.add_main_columns('SBC', XSBC)
        builder.add_main_columns('ABC', XABC)
        builder.add_main_columns('SABC', XSABC)
        ### assemble design matrix and contrasts:
        self.X = builder.get_design_matrix()
        self.contrasts = builder.get_contrasts()

    def _swapAB(self):
        if self._swap:
            A, B = self.B, self.A
            self.A = A
            self.B = B

    def _check_balanced(self):
        if not (self.A.balanced and self.B.balanced and self.C.balanced
                and self.S.balanced):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.B):
            raise (ValueError('Design must be balanced.'))
        if not self.A.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
        if not self.B.check_balanced(self.C):
            raise (ValueError('Design must be balanced.'))
        if not self.S.check_balanced_rm(self.C):
            raise (ValueError('Design must be balanced.'))

    def check_for_single_responses(self):
        A, B, C, S = self.A.A, self.B.A, self.C.A, self.S.A
        only_single = False
        for a in self.A.u:
            for b in self.B.u:
                for c in self.C.u:
                    s = S[(A == a) & (B == b) & (C == c)]
                    if np.unique(s).size == s.size:
                        only_single = True
                        warnings.warn(
                            '\nWARNING:  Only one observation per subject found.  Residuals and inference will be approximate. To avoid approximate residuals: (a) Add multiple observations per subject and per condition, and (b) ensure that all subjects and conditions have the same number of observations.\n',
                            UserWarning,
                            stacklevel=2)
                        continue
        return only_single