Esempio n. 1
0
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert (
        args.max_tokens is not None or args.max_sentences is not None
    ), "Must specify batch size either with --max-tokens or --max-sentences"
    metrics.reset()

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu and not getattr(
            args, "tpu", False):
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    utils.set_torch_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    logger.info(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(","):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    logger.info(model)
    logger.info("model {}, criterion {}".format(args.arch,
                                                criterion.__class__.__name__))
    logger.info("num. model params: {} (num. trained: {})".format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # (optionally) Configure quantization
    if args.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=args.quantization_config_path,
            max_epoch=args.max_epoch,
            max_update=args.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if args.model_parallel_size == 1:
        trainer = Trainer(args, task, model, criterion, quantizer)
    else:
        trainer = MegatronTrainer(args, task, model, criterion)

    logger.info("training on {} devices (GPUs/TPUs)".format(
        args.distributed_world_size))
    logger.info(
        "max tokens per GPU = {} and max sentences per GPU = {}".format(
            args.max_tokens, args.max_sentences))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
    if args.tpu:
        import torch_xla.core.xla_model as xm

        xm.rendezvous("load_checkpoint")  # wait for all workers
        xm.mark_step()

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch_itr.next_epoch_idx <= max_epoch:
        # train for one epoch
        valid_losses, should_stop = train(args, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=(os.pathsep in getattr(args, "data", "")),
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))
Esempio n. 2
0
def main(cfg: FairseqConfig) -> None:
    if isinstance(cfg, argparse.Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    if distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg:
        # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
        logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))

    assert (
        cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"
    metrics.reset()

    np.random.seed(cfg.common.seed)
    utils.set_torch_seed(cfg.common.seed)

    if distributed_utils.is_master(cfg.distributed_training):
        checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)

    # Print args
    logger.info(cfg)

    if cfg.checkpoint.write_checkpoints_asynchronously:
        try:
            import iopath  # noqa: F401
        except ImportError:
            logging.exception(
                "Asynchronous checkpoint writing is specified but iopath is "
                "not installed: `pip install iopath`"
            )
            return

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(cfg.task)

    assert cfg.criterion, "Please specify criterion to train a model"

    # Build model and criterion
    if cfg.distributed_training.ddp_backend == "fully_sharded":
        with fsdp_enable_wrap(cfg.distributed_training):
            model = fsdp_wrap(task.build_model(cfg.model))
    else:
        model = task.build_model(cfg.model)
    criterion = task.build_criterion(cfg.criterion)
    logger.info(model)
    logger.info("task: {}".format(task.__class__.__name__))
    logger.info("model: {}".format(model.__class__.__name__))
    logger.info("criterion: {}".format(criterion.__class__.__name__))
    logger.info(
        "num. shared model params: {:,} (num. trained: {:,})".format(
            sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False)),
            sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False) and p.requires_grad)
        )
    )

    logger.info(
        "num. expert model params: {} (num. trained: {})".format(
            sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
            sum(p.numel() for p in model.parameters() if getattr(p, "expert", False) and p.requires_grad),
        )
    )

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    # We load the valid dataset AFTER building the model
    for valid_sub_split in cfg.dataset.valid_subset.split(","):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    # (optionally) Configure quantization
    if cfg.common.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=cfg.common.quantization_config_path,
            max_epoch=cfg.optimization.max_epoch,
            max_update=cfg.optimization.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if cfg.common.model_parallel_size == 1:
        trainer = Trainer(cfg, task, model, criterion, quantizer)
    else:
        trainer = MegatronTrainer(cfg, task, model, criterion)
    logger.info(
        "training on {} devices (GPUs/TPUs)".format(
            cfg.distributed_training.distributed_world_size
        )
    )
    logger.info(
        "max tokens per device = {} and max sentences per device = {}".format(
            cfg.dataset.max_tokens,
            cfg.dataset.batch_size,
        )
    )

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
        cfg.checkpoint,
        trainer,
        # don't cache epoch iterators for sharded datasets
        disable_iterator_cache=task.has_sharded_data("train"),
    )
    if cfg.common.tpu:
        import torch_xla.core.xla_model as xm
        xm.rendezvous("load_checkpoint")  # wait for all workers

    max_epoch = cfg.optimization.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()
    while epoch_itr.next_epoch_idx <= max_epoch:
        if lr <= cfg.optimization.stop_min_lr:
            logger.info(
                f"stopping training because current learning rate ({lr}) is smaller "
                "than or equal to minimum learning rate "
                f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
            )
            break

        # train for one epoch
        valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=task.has_sharded_data("train"),
            # don't cache epoch iterators for sharded datasets
            disable_iterator_cache=task.has_sharded_data("train"),
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))

    # ioPath implementation to wait for all asynchronous file writes to complete.
    if cfg.checkpoint.write_checkpoints_asynchronously:
        logger.info(
            "ioPath PathManager waiting for all asynchronous checkpoint "
            "writes to finish."
        )
        PathManager.async_close()
        logger.info("ioPath PathManager finished waiting.")
Esempio n. 3
0
def main(cfg: DictConfig) -> None:
    if isinstance(cfg, argparse.Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    assert (
        cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"
    metrics.reset()

    np.random.seed(cfg.common.seed)
    utils.set_torch_seed(cfg.common.seed)

    if distributed_utils.is_master(cfg.distributed_training):
        checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)

    # Print args
    logger.info(cfg)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(cfg.task)
    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in cfg.dataset.valid_subset.split(","):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    assert cfg.criterion, "Please specify criterion to train a model"

    # Build model and criterion
    model = task.build_model(cfg.model)
    criterion = task.build_criterion(cfg.criterion)
    logger.info(model)
    logger.info("task: {}".format(task.__class__.__name__))
    logger.info("model: {}".format(model.__class__.__name__))
    logger.info("criterion: {})".format(criterion.__class__.__name__))
    logger.info(
        "num. model params: {} (num. trained: {})".format(
            sum(p.numel() for p in model.parameters()),
            sum(p.numel() for p in model.parameters() if p.requires_grad),
        )
    )

    # (optionally) Configure quantization
    if cfg.common.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=cfg.common.quantization_config_path,
            max_epoch=cfg.optimization.max_epoch,
            max_update=cfg.optimization.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if cfg.common.model_parallel_size == 1:
        trainer = Trainer(cfg, task, model, criterion, quantizer)
    else:
        trainer = MegatronTrainer(cfg, task, model, criterion)

    logger.info(
        "training on {} devices (GPUs/TPUs)".format(
            cfg.distributed_training.distributed_world_size
        )
    )
    logger.info(
        "max tokens per GPU = {} and batch size per GPU = {}".format(
            cfg.dataset.max_tokens,
            cfg.dataset.batch_size,
        )
    )

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
        cfg.checkpoint,
        trainer,
        # don't cache epoch iterators for sharded datasets
        disable_iterator_cache=task.has_sharded_data("train"),
    )

    max_epoch = cfg.optimization.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()
    while lr > cfg.optimization.min_lr and epoch_itr.next_epoch_idx <= max_epoch:
        # train for one epoch
        valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=task.has_sharded_data("train"),
            # don't cache epoch iterators for sharded datasets
            disable_iterator_cache=task.has_sharded_data("train"),
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))
Esempio n. 4
0
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'
    metrics.reset()

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    logger.info(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    logger.info(model)
    logger.info('model {}, criterion {}'.format(args.arch,
                                                criterion.__class__.__name__))
    logger.info('num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    if args.model_parallel_size == 1:
        trainer = Trainer(args, task, model, criterion)
    else:
        trainer = MegatronTrainer(args, task, model, criterion)

    logger.info('training on {} GPUs'.format(args.distributed_world_size))
    logger.info(
        'max tokens per GPU = {} and max sentences per GPU = {}'.format(
            args.max_tokens,
            args.max_sentences,
        ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()
    valid_subsets = args.valid_subset.split(',')
    while (lr > args.min_lr and epoch_itr.next_epoch_idx <= max_epoch):
        # train for one epoch
        should_end_training = train(args, trainer, task, epoch_itr)

        valid_losses = validate_and_save(args, trainer, task, epoch_itr,
                                         valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=(os.pathsep in getattr(args, 'data', '')),
        )

        if should_end_training:
            break
    train_meter.stop()
    logger.info('done training in {:.1f} seconds'.format(train_meter.sum))