Esempio n. 1
0
    def build_task_data(params: Params, data_supplier) -> SeqTagTaskData:
        dataset_dict: Dict[str, List[TaggedSequence]] = data_supplier()
        ner_labels = ["[PAD]", NIT] + list(
            set(tag for taggedseqs in dataset_dict.values()
                for taggedseq in taggedseqs for tok, tag in taggedseq))

        ml_logger = MLFlowLogger(tracking_uri=os.environ["HOME"] +
                                 "/data/mlflow_experiments/mlruns")
        ml_logger.init_experiment(experiment_name="Sequence_Tagging",
                                  run_name="Run_ner")

        lang_model = "bert-base-cased"
        do_lower_case = False

        tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                                   do_lower_case=do_lower_case)

        processor = NERProcessor(
            tokenizer=tokenizer,
            max_seq_len=128,
            data_dir=None,  # noqa
            metric="seq_f1",
            label_list=ner_labels,
        )

        task_data = {
            "num_labels": len(ner_labels),
            "lang_model": lang_model,
            "ml_logger": ml_logger,
            "processor": processor,
            "params": params,
        }
        return SeqTagTaskData(data=dataset_dict, task_data=task_data)
Esempio n. 2
0
def eval_question_similarity(y_true,
                             y_pred,
                             lang,
                             model_name,
                             params,
                             user=None,
                             log_to_mlflow=True,
                             run_name="default"):
    # basic metrics
    mean_diff = np.mean(np.abs(y_true - y_pred))
    roc_auc = roc_auc_score(y_true, y_pred)
    f1 = f1_score(y_true, y_pred.round(0))
    metrics = {"roc_auc": roc_auc, "mean_abs_diff": mean_diff, "f1_score": f1}
    print(metrics)

    # log experiment results to MLFlow (visit https://public-mlflow.deepset.ai/)
    if log_to_mlflow:
        params["lang"] = lang
        params["model_name"] = model_name
        if user:
            params["user"] = user

        ml_logger = MLFlowLogger(
            tracking_uri="https://public-mlflow.deepset.ai/")
        ml_logger.init_experiment(experiment_name="COVID-question-sim",
                                  run_name=run_name)
        ml_logger.log_params(params)
        ml_logger.log_metrics(metrics, step=0)
Esempio n. 3
0
def main():
    config_files = [
        "experiments/ner/conll2003_de_config.json",
        "experiments/ner/germEval14_config.json",
        "experiments/text_classification/germEval18Fine_config.json",
        "experiments/text_classification/germEval18Coarse_config.json",
        "experiments/text_classification/gnad_config.json",
        "experiments/qa/squad20_config.json",
    ]

    for conf_file in config_files:
        experiments = load_experiments(conf_file)
        for args in experiments:
            logger.info(
                "\n***********************************************"
                f"\n************* Experiment: {args.task.name} ************"
                "\n************************************************"
            )
            ml_logger = MLFlowLogger(tracking_uri=args.logging.mlflow_url)
            ml_logger.init_experiment(
                experiment_name=args.logging.mlflow_experiment,
                run_name=args.logging.mlflow_run_name,
                nested=args.logging.mlflow_nested,
            )
            run_experiment(args)
Esempio n. 4
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)
    
    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification")
Esempio n. 5
0
def train_from_scratch():
    args = parse_arguments()
    use_amp = "O2"  # using "O2" here allows roughly 30% larger batch_sizes and 45% speed up

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    # Only the main process should log here
    if args.local_rank in [-1, 0]:
        ml_logger = MLFlowLogger(
            tracking_uri="https://public-mlflow.deepset.ai/")
        ml_logger.init_experiment(experiment_name="train_from_scratch",
                                  run_name="run")

    set_all_seeds(seed=39)
    device, n_gpu = initialize_device_settings(use_cuda=True,
                                               local_rank=args.local_rank,
                                               use_amp=use_amp)

    save_dir = Path("saved_models/train_from_scratch")
    data_dir = Path("data/test")

    # Option A) just using a single file
    # train_filename = "train.txt"

    # Option B) (recommended when using StreamingDataSilo):
    # split and shuffle that file to have random order within and across epochs
    randomize_and_split_file(data_dir / "train.txt",
                             output_dir=Path("data/split_files"),
                             docs_per_file=1000)
    train_filename = Path("data/split_files")

    dev_filename = "dev.txt"

    distributed = args.local_rank != -1
    max_seq_len = 128
    batch_size = 8  #if distributed: this is per_gpu
    grad_acc = 1
    learning_rate = 1e-4
    warmup_proportion = 0.05
    n_epochs = 2
    evaluate_every = 15000
    log_loss_every = 2
    checkpoint_every = 500
    checkpoint_root_dir = Path("checkpoints")
    checkpoints_to_keep = 4
    next_sent_pred_style = "bert-style"  #or "sentence"
    max_docs = None

    # Choose enough workers to queue sufficient batches during training.
    # Optimal number depends on your GPU speed, CPU speed and number of cores
    # 16 works well on a 4x V100 machine with 16 cores (AWS: p3.8xlarge). For a single GPU you will need less.
    data_loader_workers = 1

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load("bert-base-uncased", do_lower_case=True)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a PyTorch Dataset
    processor = BertStyleLMProcessor(data_dir=data_dir,
                                     tokenizer=tokenizer,
                                     max_seq_len=max_seq_len,
                                     train_filename=train_filename,
                                     dev_filename=dev_filename,
                                     test_filename=None,
                                     next_sent_pred_style=next_sent_pred_style,
                                     max_docs=max_docs)
    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and
    #    calculates a few descriptive statistics of our datasets
    # stream_data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=distributed)
    stream_data_silo = StreamingDataSilo(
        processor=processor,
        batch_size=batch_size,
        distributed=distributed,
        dataloader_workers=data_loader_workers)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.from_scratch("bert", tokenizer.vocab_size)

    # b) and *two* prediction heads on top that are suited for our task => Language Model finetuning
    lm_prediction_head = BertLMHead(768, tokenizer.vocab_size)
    next_sentence_head = NextSentenceHead(num_labels=2,
                                          task_name="nextsentence")

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[lm_prediction_head, next_sentence_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=learning_rate,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": warmup_proportion
        },
        n_batches=len(stream_data_silo.get_data_loader("train")),
        n_epochs=n_epochs,
        device=device,
        grad_acc_steps=grad_acc,
        distributed=distributed,
        use_amp=use_amp,
        local_rank=args.local_rank)

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer.create_or_load_checkpoint(
        model=model,
        optimizer=optimizer,
        data_silo=stream_data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        log_loss_every=log_loss_every,
        device=device,
        grad_acc_steps=grad_acc,
        local_rank=args.local_rank,
        checkpoint_every=checkpoint_every,
        checkpoint_root_dir=checkpoint_root_dir,
        checkpoints_to_keep=checkpoints_to_keep,
        use_amp=use_amp)
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    model.save(save_dir)
    processor.save(save_dir)
    if args.local_rank != -1:
        torch.distributed.destroy_process_group()
Esempio n. 6
0
def doc_classification_cola():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_cola")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 3
    batch_size = 8
    evaluate_every = 450
    lang_model = "/bert-base-chinese" #BERT中文模型的路径
    #模型下载地址https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load Cola 2018 Data.

    label_list =["城乡建设","卫生计生","商贸旅游","劳动和社会保障","教育文体","交通运输","环境保护"]
    metric = "acc"

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=507,
                                            data_dir=Path("/BERT留言分类数据集"), #存放文本分类数据的文件夹路径,数据格式:第一列按字符分隔的text,第二列label,之间用制表符分隔。第一行需要有"text"与"label"
                                            dev_filename=None, #Path("dev.tsv"),
                                            dev_split=0.1,
                                            test_filename="/BERT留言分类数据集/test.tsv",
                                            label_list=label_list,
                                            metric=metric,
                                            label_column_name="label"
                                            )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)

    # language_model = Roberta.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        num_labels=len(label_list),
        class_weights=data_silo.calculate_class_weights(task_name="text_classification"))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence"],
        device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("/BERT文本分类输出的模型")
    model.save(save_dir)
    processor.save(save_dir)
Esempio n. 7
0
def dense_passage_retrieval():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="FARM-dense_passage_retrieval",
                              run_name="Run_dpr")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    batch_size = 4
    n_epochs = 3
    distributed = False  # enable for multi GPU training via DDP
    evaluate_every = 1000
    question_lang_model = "facebook/dpr-question_encoder-single-nq-base"
    passage_lang_model = "facebook/dpr-ctx_encoder-single-nq-base"
    do_lower_case = True
    use_fast = True
    embed_title = True
    num_hard_negatives = 1
    similarity_function = "dot_product"
    train_filename = "nq-train.json"
    dev_filename = "nq-dev.json"
    test_filename = "nq-dev.json"
    max_samples = None  # load a smaller dataset (e.g. for debugging)

    # For multi GPU Training via DDP we need to get the local rank
    args = parse_arguments()
    device, n_gpu = initialize_device_settings(use_cuda=True,
                                               local_rank=args.local_rank)

    # 1.Create question and passage tokenizers
    query_tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=question_lang_model,
        do_lower_case=do_lower_case,
        use_fast=use_fast)
    passage_tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=passage_lang_model,
        do_lower_case=do_lower_case,
        use_fast=use_fast)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # data_dir "data/retriever" should contain DPR training and dev files downloaded from https://github.com/facebookresearch/DPR
    # i.e., nq-train.json, nq-dev.json or trivia-train.json, trivia-dev.json
    label_list = ["hard_negative", "positive"]
    metric = "text_similarity_metric"
    processor = TextSimilarityProcessor(query_tokenizer=query_tokenizer,
                                        passage_tokenizer=passage_tokenizer,
                                        max_seq_len_query=64,
                                        max_seq_len_passage=256,
                                        label_list=label_list,
                                        metric=metric,
                                        data_dir="../data/retriever",
                                        train_filename=train_filename,
                                        dev_filename=dev_filename,
                                        test_filename=test_filename,
                                        embed_title=embed_title,
                                        num_hard_negatives=num_hard_negatives,
                                        max_samples=max_samples)

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         distributed=distributed)

    # 4. Create an BiAdaptiveModel+
    # a) which consists of 2 pretrained language models as a basis
    question_language_model = LanguageModel.load(
        pretrained_model_name_or_path="bert-base-uncased",
        language_model_class="DPRQuestionEncoder")
    passage_language_model = LanguageModel.load(
        pretrained_model_name_or_path="bert-base-uncased",
        language_model_class="DPRContextEncoder")

    # b) and a prediction head on top that is suited for our task => Question Answering
    prediction_head = TextSimilarityHead(
        similarity_function=similarity_function)

    model = BiAdaptiveModel(
        language_model1=question_language_model,
        language_model2=passage_language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm1_output_types=["per_sequence"],
        lm2_output_types=["per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        optimizer_opts={"name": "TransformersAdamW", "correct_bias": True, "weight_decay": 0.0, \
                        "eps": 1e-08},
        schedule_opts={"name": "LinearWarmup", "num_warmup_steps": 100},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        grad_acc_steps=1,
        device=device,
        distributed=distributed
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/dpr-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Evaluate
    test_data_loader = data_silo.get_data_loader("test")
    if test_data_loader is not None:
        evaluator_test = Evaluator(data_loader=test_data_loader,
                                   tasks=data_silo.processor.tasks,
                                   device=device)
        model.connect_heads_with_processor(processor.tasks)
        test_result = evaluator_test.eval(model)
Esempio n. 8
0
from farm.experiment import initialize_optimizer
from farm.infer import Inferencer
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.language_model import LanguageModel
from farm.modeling.prediction_head import RegressionHead
from farm.modeling.tokenization import Tokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM",
                          run_name="Run_doc_regression")

##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 5
batch_size = 32
evaluate_every = 30
lang_model = "bert-base-cased"

# 1.Create a tokenizer
tokenizer = Tokenizer.from_pretrained(pretrained_model_name_or_path=lang_model,
                                      do_lower_case=False)
def finetune_sentence_level(args):
    logging.basicConfig(
        format="%(asctime)s %(levelname)s %(name)s  %(message)s",
        datefmt="%d-%m-%y %H:%M:%S",
        level=logging.INFO)
    args.logger = logging.getLogger(__name__)
    if args.do_logfile:
        filehandler = logging.FileHandler(
            os.path.join(args.log_dir, f"{args.run_name}.log"))
        args.logger.addHandler(filehandler)
    args.logger.info(vars(args))
    # Setup MLFlow
    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name=args.experiment_name,
                              run_name=args.run_name)
    set_all_seeds(seed=args.seed)
    args.device, args.n_gpu = initialize_device_settings(use_cuda=True)
    # Create a tokenizer
    tok_class = None if not args.model_class_name else f"{args.model_class_name}Tokenizer"
    tokenizer = CustomTokenizer.load(
        pretrained_model_name_or_path=args.model_name,
        do_lower_case=args.do_lower_case,
        tokenizer_class=tok_class)
    # Create a processor for the dataset
    processor = load_processor(args, tokenizer)
    # Create a DataSilo that loads several datasets (train/dev/test)
    # provides DataLoaders and calculates descriptive statistics
    data_silo = DataSilo(processor=processor, batch_size=args.batch_size)
    if args.do_feat_embeds:
        args.feat_size = processor.feat_size
    # We do cross-validation
    if args.folds > 1:
        evaluate_kfold(args, data_silo, processor)
    else:
        adapt_model = train_on_split(args, data_silo, processor)
        evaluator_test = MultitaskEvaluator(
            data_loader=data_silo.get_data_loader("test"),
            tasks=data_silo.processor.tasks,
            device=args.device)
        result = evaluator_test.eval(adapt_model, return_preds_and_labels=True)
        evaluator_test.log_results(result,
                                   "Test",
                                   steps=len(
                                       data_silo.get_data_loader("test")))
        pred_tsv = pd.DataFrame()
        args.logger.info("Test results:")
        for res in result[1:]:
            args.logger.info(f"__{res['task_name']}__")
            if args.train_mode == "classification":
                metrics = classification_metrics(res.get("preds"),
                                                 res.get("labels"))
                args.logger.info(metrics)
            else:
                metrics = regression_metrics(res.get("preds"),
                                             res.get("labels"))
                for metric in metrics.keys():
                    args.logger.info(f"{metric}: {metrics[metric]}")
            if args.save_predictions:
                pred_tsv[f"{res['task_name']}_preds"] = res.get("preds")[0]
                pred_tsv[f"{res['task_name']}_labels"] = res.get("labels")[0]
        if args.save_predictions:
            save_tsv(pred_tsv,
                     os.path.join(args.out_dir, f"{args.run_name}.tsv"))
        # Load trained model and perform inference
        dicts = [
            {
                "text":
                "The intense interest aroused in the public has now somewhat subsided."
            },
            {
                "text": "The quick brown fox jumped over the lazy dog."
            },
        ]
        model = MultitaskInferencer.load(args.save_dir,
                                         gpu=True,
                                         level="sentence")
        result = model.inference_from_dicts(dicts=dicts)
        args.logger.info("Inference example:")
        args.logger.info(result)
Esempio n. 10
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_doc_classification_fasttext")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    n_epochs = 3
    batch_size = 32
    evaluate_every = 100
    # load fasttext from a local path:
    #fasttext_model = "../saved_models/fasttext-german-uncased"
    # or through s3
    fasttext_model = "fasttext-german-uncased"
    do_lower_case = True
    max_features = 10_000  # maximum number of unique words we will transform
    device, n_gpu = initialize_device_settings(use_cuda=True)

    # 1. To make Fasttext work within FARM and with advanced aggregation strategies, we need a fixed vocabulary and associated Wordembeddings
    ft_converter = Fasttext_converter(
        pretrained_model_name_or_path=fasttext_model,
        do_lower_case=do_lower_case,
        data_path=Path("../data/germeval18"),
        train_filename="train.tsv",
        output_path=Path("../saved_models/fasttext-german-uncased-converted"),
        language="German",
        max_features=max_features)
    # We convert the data to have fixed size vocab and embeddings
    vocab_counts = ft_converter.convert_on_data()

    # 2. Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=ft_converter.output_path,
        do_lower_case=do_lower_case)

    # 3. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data automaticaly if it is not available.
    # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv
    label_list = ["OTHER", "OFFENSE"]
    metric = "f1_macro"

    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=128,
        data_dir=ft_converter.data_path,
        label_list=label_list,
        train_filename=ft_converter.train_filename,
        dev_split=0,
        test_filename="test.tsv",
        metric=metric,
        label_column_name="coarse_label")

    # 4. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    #    few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor, batch_size=batch_size, max_processes=1
    )  # multiprocessing with WordembeddingTokenizer is not optimal - so disable it

    # 5. Create an AdaptiveModel
    # a) which consists of the newly created embedding model as a basis.
    language_model = LanguageModel.load(ft_converter.output_path)
    # b) and a prediction head on top that is suited for our task => Text classification
    # Since we do not have a powerful Transformer based Language Model, we need a slightly deeper NN
    # for going the Classification
    prediction_head = TextClassificationHead(
        layer_dims=[300, 600, len(label_list)],
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 6. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-3,
        device=device,
        n_batches=len(
            data_silo.get_data_loader("train")
        ),  #len(data_silo.loaders["train"]),streaming: len(data_silo.get_data_loader("train"))
        n_epochs=n_epochs)

    # 7. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    # 8. Let it grow
    trainer.train()
Esempio n. 11
0
def question_answering():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_question_answering")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 24
    n_epochs = 2
    evaluate_every = 2000
    lang_model = "roberta-base"
    do_lower_case = False  # roberta is a cased model
    train_filename = "train-v2.0.json"
    dev_filename = "dev-v2.0.json"

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)
    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    label_list = ["start_token", "end_token"]
    metric = "squad"
    processor = SquadProcessor(
        tokenizer=tokenizer,
        max_seq_len=384,
        label_list=label_list,
        metric=metric,
        train_filename=train_filename,
        dev_filename=dev_filename,
        test_filename=None,
        data_dir=Path("../data/squad20"),
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         distributed=False)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Question Answering
    prediction_head = QuestionAnsweringHead()

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": 0.2
        },
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device)
    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/bert-english-qa-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    QA_input = [{
        "qas": ["Who counted the game among the best ever made?"],
        "context":
        "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created."
    }]

    model = QAInferencer.load(save_dir, batch_size=40, gpu=True)
    result = model.inference_from_dicts(dicts=QA_input)[0]

    pprint.pprint(result)

    # 10. Do Inference on whole SQuAD Dataset & write the predictions file to disk
    filename = os.path.join(processor.data_dir, processor.dev_filename)
    result = model.inference_from_file(file=filename, return_json=False)
    result_squad = [x.to_squad_eval() for x in result]

    write_squad_predictions(predictions=result_squad,
                            predictions_filename=filename,
                            out_filename="predictions.json")
Esempio n. 12
0
File: ner.py Progetto: yon606/FARM
def ner():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_ner")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 4
    batch_size = 32
    evaluate_every = 400
    lang_model = "bert-base-german-cased"
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # See test/sample/ner/train-sample.txt for an example of the data format that is expected by the Processor
    ner_labels = [
        "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG",
        "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"
    ]

    processor = NERProcessor(tokenizer=tokenizer,
                             max_seq_len=128,
                             data_dir=Path("../data/conll03-de"),
                             delimiter=" ",
                             metric="seq_f1",
                             label_list=ner_labels)

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => NER
    prediction_head = TokenClassificationHead(num_labels=len(ner_labels))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device,
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = "saved_models/bert-german-ner-tutorial"
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {
            "text":
            "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"
        },
        {
            "text": "Martin Müller spielt Handball in Berlin"
        },
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
def train_from_scratch():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="")
    ml_logger.init_experiment(experiment_name="from_scratch", run_name="debug")

    #########################
    ######## Settings
    ########################
    set_all_seeds(seed=39)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    evaluate_every = 5000
    vocab_size = 30522
    # dev_filename = None
    save_dir = Path("saved_models/train_from_scratch")

    n_epochs = 10
    learning_rate = 1e-4
    warmup_proportion = 0.05
    batch_size = 16  # (probably only possible via gradient accumulation steps)
    max_seq_len = 64

    data_dir = Path("data/lm_finetune_nips")
    train_filename = "train.txt"
    dev_filename = "dev.txt"

    # 1.Create a tokenizer
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    processor = BertStyleLMProcessor(
        data_dir=data_dir,
        tokenizer=tokenizer,
        max_seq_len=max_seq_len,
        train_filename=train_filename,
        dev_filename=dev_filename,
        test_filename=None,
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and
    #    calculates a few descriptive statistics of our datasets
    stream_data_silo = StreamingDataSilo(processor=processor,
                                         batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.from_scratch("bert", vocab_size)

    # b) and *two* prediction heads on top that are suited for our task => Language Model finetuning
    lm_prediction_head = BertLMHead(768, vocab_size)
    next_sentence_head = NextSentenceHead([768, 2], task_name="nextsentence")

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[lm_prediction_head, next_sentence_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=learning_rate,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": warmup_proportion
        },
        n_batches=len(stream_data_silo.get_data_loader("train")),
        n_epochs=n_epochs,
        device=device,
        grad_acc_steps=8,
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer.create_or_load_checkpoint(
        model=model,
        optimizer=optimizer,
        data_silo=stream_data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
        grad_acc_steps=8,
        checkpoint_root_dir=Path(
            "saved_models/train_from_scratch/checkpoints"),
    )
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    model.save(save_dir)
    processor.save(save_dir)
Esempio n. 14
0
def train_from_scratch():
    # We need the local rank argument for DDP
    args = parse_arguments()
    use_amp = "O2"

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="")
    ml_logger.init_experiment(experiment_name="train_from_scratch",
                              run_name="run")

    set_all_seeds(seed=39)
    # device, n_gpu = initialize_device_settings(use_cuda=True)
    device, n_gpu = initialize_device_settings(use_cuda=True,
                                               local_rank=args.local_rank,
                                               use_amp=use_amp)
    evaluate_every = 10000

    save_dir = Path("saved_models/train_from_scratch")
    data_dir = Path("data/lm_finetune_nips")
    train_filename = "train.txt"
    # dev_filename = "dev.txt"

    max_seq_len = 128
    batch_size = 80
    grad_acc = 3
    learning_rate = 0.0001
    warmup_proportion = 0.01
    n_epochs = 5
    vocab_file = "bert-base-uncased-vocab.txt"

    # 1.Create a tokenizer
    tokenizer = BertTokenizer(data_dir / vocab_file, do_lower_case=True)
    # tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    # 2. Create a DataProcessor that handles all the conversion from raw text into a PyTorch Dataset
    # limiting max docs to divisible of 64 (world_size * num_workers)
    processor = BertStyleLMProcessor(data_dir=data_dir,
                                     tokenizer=tokenizer,
                                     max_seq_len=max_seq_len,
                                     train_filename=train_filename,
                                     dev_filename=None,
                                     test_filename=None)

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and
    #    calculates a few descriptive statistics of our datasets
    stream_data_silo = StreamingDataSilo(processor=processor,
                                         batch_size=batch_size,
                                         distributed=True,
                                         dataloader_workers=16)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.from_scratch("bert", tokenizer.vocab_size)

    # b) and *two* prediction heads on top that are suited for our task => Language Model finetuning
    lm_prediction_head = BertLMHead(768, tokenizer.vocab_size)
    next_sentence_head = NextSentenceHead([768, 2], task_name="nextsentence")

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[lm_prediction_head, next_sentence_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=learning_rate,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": warmup_proportion
        },
        n_batches=len(stream_data_silo.get_data_loader("train")),
        n_epochs=n_epochs,
        device=device,
        grad_acc_steps=grad_acc,
        distributed=True,
        use_amp=use_amp,
        local_rank=args.local_rank)

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    # if args.get("checkpoint_every"):
    #     checkpoint_every = int(args["checkpoint_every"])
    #     checkpoint_root_dir = Path("/opt/ml/checkpoints/training")
    # else:
    checkpoint_every = None
    checkpoint_root_dir = None

    trainer = Trainer.create_or_load_checkpoint(
        model=model,
        optimizer=optimizer,
        data_silo=stream_data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
        grad_acc_steps=grad_acc,
        checkpoint_every=checkpoint_every,
        checkpoint_root_dir=checkpoint_root_dir,
        use_amp=use_amp,
    )
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()
Esempio n. 15
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_doc_classification_glove")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    n_epochs = 3
    batch_size = 32
    evaluate_every = 100
    # load from a local path:
    lang_model = Path("../saved_models/glove-german-uncased")
    # or through s3
    #lang_model = "glove-german-uncased"
    do_lower_case = True

    device, n_gpu = initialize_device_settings(use_cuda=True)

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data automaticaly if it is not available.
    # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv
    label_list = ["OTHER", "OFFENSE"]
    metric = "f1_macro"

    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=128,
        data_dir=Path("../data/germeval18"),
        label_list=label_list,
        dev_split=0,
        test_filename="test.tsv",
        train_filename="train.tsv",
        metric=metric,
        label_column_name="coarse_label")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         max_processes=1)

    # 4. Create an AdaptiveModel
    # a) which consists of an embedding model as a basis.
    # Word embedding models only converts words it has seen during training to embedding vectors.
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        layer_dims=[300, 600, len(label_list)],
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    # 7. Let it grow
    trainer.train()
Esempio n. 16
0
def doc_classification_cola():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_cola")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 5
    batch_size = 100
    evaluate_every = 20
    lang_model = "bert-base-cased"
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load Cola 2018 Data.

    label_list = ["0", "1"]
    metric = "mcc"

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=64,
                                            data_dir=Path("../data/cola"),
                                            dev_filename=Path("dev.tsv"),
                                            dev_split=None,
                                            test_filename=None,
                                            label_list=label_list,
                                            metric=metric,
                                            label_column_name="label")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)

    # language_model = Roberta.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        num_labels=len(label_list),
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("saved_models/bert-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {
            "text": "The box contained the ball from the tree."
        },
        {
            "text": "I'll fix you a drink."
        },
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
Esempio n. 17
0
def doc_classification_multilabel():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 1
    batch_size = 32

    evaluate_every = 500
    lang_model = "bert-base-uncased"
    do_lower_case = True

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model,
        do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data.

    label_list = ["toxic","severe_toxic","obscene","threat","insult","identity_hate"]
    metric = "acc"

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=128,
                                            data_dir=Path("../data/toxic-comments"),
                                            label_list=label_list,
                                            label_column_name="label",
                                            metric=metric,
                                            quote_char='"',
                                            multilabel=True,
                                            train_filename="train.tsv",
                                            dev_filename="val.tsv",
                                            test_filename=None,
                                            dev_split=0,
                                            )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = MultiLabelTextClassificationHead(num_labels=len(label_list))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence"],
        device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/bert-german-multi-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {"text": "You f*****g bastards"},
        {"text": "What a lovely world"},
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
Esempio n. 18
0
def main(args):
    print(f"[INFO] PyTorch Version: {torch.__version__}")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("[INFO] Devices available: {}".format(device))
    checkpoint_path = Path(args.ckpt_path) / args.run_name
    ml_logger = MLFlowLogger(tracking_uri=args.tracking_uri)
    ml_logger.init_experiment(experiment_name=args.experiment_name,
                              run_name=args.run_name)
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=args.pretrained_model_name_or_path,
        do_lower_case=False)
    # Processor
    if args.task_name == "text_classification":
        processor = TextClassificationProcessor(
            tokenizer=tokenizer,
            train_filename=args.train_filename,
            dev_filename=None,
            test_filename=args.test_filename,
            header=0,
            max_seq_len=args.max_seq_len,
            data_dir=args.data_dir,
            label_list=args.label_list,
            metric=args.metric,
            label_column_name=args.label_column_name,
            text_column_name=args.text_column_name)
    elif args.task_name == "question_answering":
        processor = SquadProcessor(tokenizer=tokenizer,
                                   train_filename=args.train_filename,
                                   dev_filename=args.test_filename,
                                   test_filename=args.test_filename,
                                   max_seq_len=args.max_seq_len,
                                   data_dir=args.data_dir,
                                   label_list=args.label_list,
                                   metric=args.metric,
                                   max_query_length=64,
                                   doc_stride=128,
                                   max_answers=1)
    else:
        raise ValueError("task name error")
    processor.save(checkpoint_path)

    # DataSilo
    data_silo = DataSilo(processor=processor,
                         batch_size=args.batch_size,
                         eval_batch_size=args.eval_batch_size,
                         caching=True,
                         cache_path=checkpoint_path)
    # LanguageModel: Build pretrained language model
    language_model = LanguageModel.load(args.pretrained_model_name_or_path,
                                        language="korean")

    # PredictionHead: Build predictor layer
    if args.task_name == "text_classification":
        # If you do classification on imbalanced classes, consider using class weights.
        # They change the loss function to down-weight frequent classes.
        prediction_head = TextClassificationHead(
            num_labels=len(args.label_list),
            class_weights=data_silo.calculate_class_weights(
                task_name=args.task_name))
    elif args.task_name == "question_answering":
        prediction_head = QuestionAnsweringHead(
            layer_dims=[768, 2],
            task_name=args.task_name,
        )
    else:
        raise ValueError("task name error")

    # AdaptiveModel: Combine all
    if args.task_name == "text_classification":
        lm_output_types = ["per_sequence"]
    elif args.task_name == "question_answering":
        lm_output_types = ["per_token"]
    else:
        raise ValueError("task name error")

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=args.embeds_dropout_prob,
                          lm_output_types=lm_output_types,
                          device=device)

    # Initialize Optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        device=device,
        learning_rate=args.learning_rate,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=args.n_epochs)
    # EarlyStopping
    earlymetric = "f1" if args.task_name == "question_answering" else "acc"
    mode = "max" if args.task_name in [
        "text_classification", "question_answering"
    ] else "min"
    earlystop = EarlyStopping(save_dir=checkpoint_path,
                              metric=earlymetric,
                              mode=mode,
                              patience=5)

    # Trainer
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        lr_schedule=lr_schedule,
        data_silo=data_silo,
        early_stopping=earlystop,
        evaluate_every=args.evaluate_every,
        checkpoints_to_keep=args.checkpoints_to_keep,
        checkpoint_root_dir=checkpoint_path,
        checkpoint_every=args.checkpoint_every,
        epochs=args.n_epochs,
        n_gpu=args.n_gpu,
        device=device,
    )
    # now train!
    model = trainer.train()
Esempio n. 19
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    n_epochs = 1
    batch_size = 32
    evaluate_every = 100
    lang_model = "bert-base-german-cased"
    # or a local path:
    # lang_model = Path("../saved_models/farm-bert-base-cased")
    use_amp = None

    device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp)

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model,
        do_lower_case=False)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data.

    label_list = ["OTHER", "OFFENSE"]
    metric = "f1_macro"

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=128,
                                            data_dir=Path("../data/germeval18"),
                                            label_list=label_list,
                                            metric=metric,
                                            label_column_name="coarse_label"
                                            )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    #    few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        class_weights=data_silo.calculate_class_weights(task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence"],
        device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        use_amp=use_amp)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("saved_models/bert-german-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"},
        {"text": "Martin Müller spielt Handball in Berlin"},
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
Esempio n. 20
0
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.language_model import LanguageModel
from farm.modeling.optimization import initialize_optimizer
from farm.modeling.prediction_head import QuestionAnsweringHead
from farm.modeling.tokenization import Tokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_question_answering")

##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
batch_size = 24
n_epochs = 2
evaluate_every = 500
base_LM_model = "bert-base-cased"
train_filename="train-v2.0.json"
dev_filename="dev-v2.0.json"

# 1.Create a tokenizer
tokenizer = Tokenizer.load(
Esempio n. 21
0
def question_answering():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_natural_questions")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 24
    n_epochs = 1
    evaluate_every = 500
    lang_model = "deepset/roberta-base-squad2" # start with a model that can already extract answers
    do_lower_case = False # roberta is a cased model
    train_filename = "train_medium.jsonl"
    dev_filename = "dev_medium.jsonl"
    keep_is_impossible = 0.15 # downsample negative examples after data conversion
    downsample_context_size = 300 # reduce length of wikipedia articles to relevant part around the answer

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case
    )

    # Add HTML tag tokens to the tokenizer vocabulary, so they do not get split apart
    html_tags = [
                "<Th>","</Th>",
                "<Td>","</Td>",
                "<Tr>","</Tr>",
                "<Li>","</Li>",
                "<P>" ,"</P>",
                "<Ul>","</Ul>",
                "<H1>","</H1>",
                "<H2>","</H2>",
                "<H3>","</H3>",
                "<H4>","</H4>",
                "<H5>", "</H5>",
                "<Td_colspan=",
    ]
    tokenizer.add_tokens(html_tags)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    processor = NaturalQuestionsProcessor(
        tokenizer=tokenizer,
        max_seq_len=384,
        train_filename=train_filename,
        dev_filename=dev_filename,
        keep_no_answer=keep_is_impossible,
        downsample_context_size=downsample_context_size,
        data_dir=Path("../data/natural_questions"),
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size, caching=True)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model,n_added_tokens=len(html_tags))
    # b) and in case of Natural Questions we need two Prediction Heads
    #    one for extractive Question Answering
    qa_head = QuestionAnsweringHead()
    #    another one for answering yes/no questions or deciding if the given text passage might contain an answer
    classification_head = TextClassificationHead(num_labels=len(processor.answer_type_list)) # answer_type_list = ["is_impossible", "span", "yes", "no"]
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[qa_head, classification_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/roberta-base-squad2-nq")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Since training on the whole NQ corpus requires substantial compute resources we trained and uploaded a model on s3
    fetch_archive_from_http("https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/models/roberta-base-squad2-nq.zip", output_dir="../saved_models/farm")
    QA_input = [
        {
            "qas": ["Did GameTrailers rated Twilight Princess as one of the best games ever created?"],
            "context":  "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created."
        }
    ]

    model = QAInferencer.load(model_name_or_path="../saved_models/farm/roberta-base-squad2-nq", batch_size=batch_size, gpu=True)
    result = model.inference_from_dicts(dicts=QA_input, return_json=False) # result is a list of QAPred objects

    print(f"\nQuestion: Did GameTrailers rated Twilight Princess as one of the best games ever created?"
          f"\nAnswer from model: {result[0].prediction[0].answer}")
    model.close_multiprocessing_pool()
Esempio n. 22
0
def text_pair_classification():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_text_pair_classification")

    ##########################
    ########## Settings ######
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 2
    batch_size = 64
    evaluate_every = 500
    lang_model = "bert-base-cased"
    label_list = ["0", "1"]

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=False)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset.
    # The TextPairClassificationProcessor expects a csv with columns called "text', "text_b" and "label"
    processor = TextPairClassificationProcessor(
        tokenizer=tokenizer,
        label_list=label_list,
        metric="f1_macro",
        max_seq_len=128,
        dev_filename="dev.tsv",
        test_filename=None,
        data_dir=Path("../data/asnq_binary"),
        delimiter="\t")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task
    prediction_head = TextClassificationHead(
        num_labels=len(label_list),
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence_continuous"],
                          device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=5e-6,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("saved_models/text_pair_classification_model")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    #    Add your own text adapted to the dataset you provide
    basic_texts = [
        {
            "text":
            "how many times have real madrid won the champions league in a row",
            "text_b":
            "They have also won the competition the most times in a row, winning it five times from 1956 to 1960"
        },
        {
            "text": "how many seasons of the blacklist are there on netflix",
            "text_b": "Retrieved March 27 , 2018 ."
        },
    ]

    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)

    print(result)
Esempio n. 23
0
from farm.modeling.optimization import initialize_optimizer
from farm.infer import Inferencer
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.language_model import LanguageModel
from farm.modeling.prediction_head import TextClassificationHead
from farm.modeling.tokenization import Tokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM",
                          run_name="Run_doc_classification")

##########################
########## Settings
##########################
set_all_seeds(seed=42)
n_epochs = 1
batch_size = 32
evaluate_every = 100
lang_model = "bert-base-german-cased"
use_amp = None

device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp)

# 1.Create a tokenizer
tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
Esempio n. 24
0
from farm.infer import Inferencer
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.prediction_head import QuestionAnsweringHead
from farm.modeling.language_model import LanguageModel
from farm.modeling.tokenization import Tokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="SQuAD", run_name="qa_albert")

#########################
######## Settings
########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=False)
batch_size = 32
n_epochs = 2
evaluate_every = 1
base_LM_model = "albert"
train_filename = "train-v2.0.json"
dev_filename = "dev-v2.0.json"
save_dir = "../saved_models/qa_medium_albert"
inference_file = "../data/squad20/subsets/5ad3ff1b604f3c001a3ffc74.json"
predictions_file = save_dir + "/predictions.json"
Esempio n. 25
0
File: ner.py Progetto: tholor/FARM
from farm.infer import Inferencer
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.language_model import Bert
from farm.modeling.prediction_head import TokenClassificationHead
from farm.modeling.tokenization import BertTokenizer
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM",
                          run_name="Run_minimal_example_ner")

##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 4
batch_size = 32
evaluate_every = 50
lang_model = "bert-base-german-cased"

# 1.Create a tokenizer
tokenizer = BertTokenizer.from_pretrained(
    pretrained_model_name_or_path=lang_model, do_lower_case=False)
Esempio n. 26
0
def text_pair_classification():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_text_pair_classification")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 2
    batch_size = 64
    evaluate_every = 500
    lang_model = "bert-base-cased"
    label_list = ["0", "1"]
    train_filename = "train.tsv"
    dev_filename = "dev_200k.tsv"

    # The source data can be found here https://github.com/microsoft/MSMARCO-Passage-Ranking
    generate_data = False
    data_dir = Path("../data/msmarco_passage")
    predictions_raw_filename = "predictions_raw.txt"
    predictions_filename = "predictions.txt"
    train_source_filename = "triples.train.1m.tsv"
    qrels_filename = "qrels.dev.tsv"
    queries_filename = "queries.dev.tsv"
    passages_filename = "collection.tsv"
    top1000_filename = "top1000.dev"

    # 0. Preprocess and save MSMarco data in a format that can be ingested by FARM models. Only needs to be done once!
    # The final format is a tsv file with 3 columns (text, text_b and label)
    if generate_data:
        reformat_msmarco_train(data_dir / train_source_filename,
                               data_dir / train_filename)
        reformat_msmarco_dev(data_dir / queries_filename,
                             data_dir / passages_filename,
                             data_dir / qrels_filename,
                             data_dir / top1000_filename,
                             data_dir / dev_filename)

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model,
        do_lower_case=False)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    #    Evaluation during training will be performed on a slice of the train set
    #    We will be using the msmarco dev set as our final evaluation set
    processor = TextPairClassificationProcessor(tokenizer=tokenizer,
                                                label_list=label_list,
                                                metric="f1_macro",
                                                train_filename=train_filename,
                                                test_filename=None,
                                                dev_split=0.001,
                                                max_seq_len=128,
                                                data_dir=data_dir,
                                                delimiter="\t")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task
    prediction_head = TextClassificationHead(num_labels=len(label_list),
                                             class_weights=data_silo.calculate_class_weights(
                                                 task_name="text_classification"),
                                             )

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence_continuous"],
        device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("saved_models/passage_ranking_model")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    #    Add your own text adapted to the dataset you provide
    model = Inferencer.load(save_dir, gpu=True, max_seq_len=128, batch_size=128)
    result = model.inference_from_file(data_dir / dev_filename)

    write_msmarco_results(result, save_dir / predictions_raw_filename)

    msmarco_evaluation(preds_file=save_dir / predictions_raw_filename,
                       dev_file=data_dir / dev_filename,
                       qrels_file=data_dir / qrels_filename,
                       output_file=save_dir / predictions_filename)

    model.close_multiprocessing_pool()
def doc_classification_with_earlystopping():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    # for local logging instead:
    # ml_logger = MLFlowLogger(tracking_uri="logs")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="DocClassification_ES_f1_1")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    use_amp = None
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 20
    batch_size = 32
    evaluate_every = 100
    lang_model = "bert-base-german-cased"
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data automaticaly if it is not available.
    # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv

    # The processor wants to know the possible labels ...
    label_list = ["OTHER", "OFFENSE"]

    # The evaluation on the dev-set can be done with one of the predefined metrics or with a
    # metric defined as a function from (preds, labels) to a dict that contains all the actual
    # metrics values. The function must get registered under a string name and the string name must
    # be used.
    def mymetrics(preds, labels):
        acc = simple_accuracy(preds, labels)
        f1other = f1_score(y_true=labels, y_pred=preds, pos_label="OTHER")
        f1offense = f1_score(y_true=labels, y_pred=preds, pos_label="OFFENSE")
        f1macro = f1_score(y_true=labels, y_pred=preds, average="macro")
        f1micro = f1_score(y_true=labels, y_pred=preds, average="macro")
        return {
            "acc": acc,
            "f1_other": f1other,
            "f1_offense": f1offense,
            "f1_macro": f1macro,
            "f1_micro": f1micro
        }

    register_metrics('mymetrics', mymetrics)
    metric = 'mymetrics'

    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=64,
        data_dir=Path("../data/germeval18"),
        label_list=label_list,
        metric=metric,
        label_column_name="coarse_label")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        num_labels=len(label_list),
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.2,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=0.5e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        use_amp=use_amp)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    # Also create an EarlyStopping instance and pass it on to the trainer

    # An early stopping instance can be used to save the model that performs best on the dev set
    # according to some metric and stop training when no improvement is happening for some iterations.
    earlystopping = EarlyStopping(
        metric="f1_offense",
        mode=
        "max",  # use the metric from our own metrics function instead of loss
        # metric="f1_macro", mode="max",  # use f1_macro from the dev evaluator of the trainer
        # metric="loss", mode="min",   # use loss from the dev evaluator of the trainer
        save_dir=Path("saved_models/bert-german-doc-tutorial-es"
                      ),  # where to save the best model
        patience=
        5  # number of evaluations to wait for improvement before terminating the training
    )

    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device,
                      early_stopping=earlystopping)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model.
    # NOTE: if early stopping is used, the best model has been stored already in the directory
    # defined with the EarlyStopping instance
    # The model we have at this moment is the model from the last training epoch that was carried
    # out before early stopping terminated the training
    save_dir = Path("saved_models/bert-german-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {
            "text":
            "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"
        },
        {
            "text": "Martin Müller spielt Handball in Berlin"
        },
    ]

    # Load from the final epoch directory and apply
    print("LOADING INFERENCER FROM FINAL MODEL DURING TRAINING")
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
    model.close_multiprocessing_pool()

    # Load from saved best model
    print("LOADING INFERENCER FROM BEST MODEL DURING TRAINING")
    model = Inferencer.load(earlystopping.save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print("APPLICATION ON BEST MODEL")
    print(result)
    model.close_multiprocessing_pool()
Esempio n. 28
0
def xlmr_qa_demo():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="run_xmlr_qa")

    #########################
    ######## Settings
    ########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 3
    grad_acc_steps = 8
    n_epochs = 2
    evaluate_every = 200
    base_LM_model = "xlm-roberta-large"

    data_dir = Path("../data/squad20")
    train_filename = Path("train-v2.0.json")
    dev_filename = Path("dev-v2.0.json")

    save_dir = Path("../saved_models/xlmr-large-qa")

    inference_file = Path("../data/MLQA_V1/dev/dev-context-de-question-de.json")
    predictions_file = save_dir / "predictions.json"
    full_predictions_file = save_dir / "full_predictions.json"
    max_processes_for_inference = 8
    train = True
    inference = False

    if train:
        # 1.Create a tokenizer
        tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model)
        # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
        label_list = ["start_token", "end_token"]
        metric = "squad"
        processor = SquadProcessor(
            tokenizer=tokenizer,
            max_seq_len=384,
            label_list=label_list,
            metric=metric,
            train_filename=train_filename,
            dev_filename=dev_filename,
            test_filename=None,
            data_dir=data_dir,
            dev_split=0.0
        )

        # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
        data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False, max_processes=1)

        # 4. Create an AdaptiveModel
        # a) which consists of a pretrained language model as a basis
        language_model = LanguageModel.load(base_LM_model, n_added_tokens=3)
        # b) and a prediction head on top that is suited for our task => Question Answering
        prediction_head = QuestionAnsweringHead()

        model = AdaptiveModel(
            language_model=language_model,
            prediction_heads=[prediction_head],
            embeds_dropout_prob=0.1,
            lm_output_types=["per_token"],
            device=device,
        )

        # 5. Create an optimizer
        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            learning_rate=3e-5,
            schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2},
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=n_epochs,
            grad_acc_steps=grad_acc_steps,
            device=device
        )

        # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
        trainer = Trainer(
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=device,
        )
        # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
        model = trainer.train(model)

        # 8. Hooray! You have a model. Store it:
        model.save(save_dir)
        processor.save(save_dir)


    if inference:
        model = Inferencer.load(save_dir, batch_size=32, gpu=True)
        full_result = model.inference_from_file(
            file=inference_file,
            max_processes=max_processes_for_inference,
        )

        for x in full_result:
            print(x)
            print()

        result = {r["id"]: r["preds"][0][0] for r in full_result}
        full_result = {r["id"]: r["preds"] for r in full_result}

        json.dump(result,
                  open(predictions_file, "w"),
                  indent=4,
                  ensure_ascii=False)
        json.dump(full_result,
                  open(full_predictions_file, "w"),
                  indent=4,
                  ensure_ascii=False)
def doc_classification(
    task_config,
    model_name_or_path,
    cache_dir,
    data_dir,
    save_dir,
    model_dir,
    run_name="0",
    lr=1e-05,
    warmup_steps=5000,
    balance_classes=True,
    embeds_dropout=0.1,
    epochs=200,  # large because we use early stopping by default
    batch_size=20,
    grad_acc_steps=1,
    early_stopping_metric="roc_auc",
    early_stopping_mode="max",
    early_stopping_patience=10,
    model_class="Bert",
    tokenizer_class="BertTokenizer",
    do_lower_case=False,
    do_train=True,
    do_eval=True,
    do_hpo=False,
    print_preds=False,
    print_dev_preds=False,
    max_seq_len=512,
    seed=11,
    eval_every=500,
    use_amp=False,
    use_cuda=True,
):
    # Load task config
    task_config = yaml.safe_load(open(task_config))

    data_dir = data_dir
    save_dir = save_dir
    model_dir = model_dir

    # Create label list from args list or (for large label lists) create from file by splitting by space
    if isinstance(task_config["data"]["label_list"], list):
        label_list = task_config["data"]["label_list"]
    else:
        with open(data_dir / 'labels' /
                  task_config["data"]["label_list"]) as code_file:
            label_list = code_file.read().split(" ")

    # Register Outcome Metrics
    register_task_metrics(label_list)

    # General Settings
    set_all_seeds(seed=seed)
    device, n_gpu = initialize_device_settings(use_cuda=use_cuda,
                                               use_amp=use_amp)

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=model_name_or_path,
        tokenizer_class=tokenizer_class,
        do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=max_seq_len,
        data_dir=data_dir,
        label_list=label_list,
        metric=task_config["metric"],
        multilabel=task_config["multilabel"],
        train_filename=task_config["data"]["train_filename"],
        dev_filename=task_config["data"]["dev_filename"],
        dev_split=task_config["data"]["dev_split"]
        if "dev_split" in task_config["data"] else None,
        test_filename=task_config["data"]["test_filename"],
        delimiter=task_config["data"]["parsing"]["delimiter"],
        quote_char=task_config["data"]["parsing"]["quote_char"],
        label_column_name=task_config["data"]["parsing"]["label_column"])

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    #    few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor,
                         caching=True,
                         cache_path=Path(cache_dir),
                         batch_size=batch_size)

    if do_train:

        # Setup MLFlow logger
        ml_logger = MLFlowLogger(tracking_uri=task_config["log_dir"])
        ml_logger.init_experiment(
            experiment_name=task_config["experiment_name"],
            run_name=f'{task_config["experiment_name"]}_{run_name}')

        # 4. Create an AdaptiveModel
        # a) which consists of a pretrained language model as a basis
        language_model = LanguageModel.load(model_name_or_path,
                                            language_model_class=model_class)

        # b) and a prediction head on top that is suited for our task

        # Define class weights
        if balance_classes:
            class_weights = data_silo.calculate_class_weights(
                task_name=task_config["task_type"])
        else:
            class_weights = None

        # Create Multi- or Single-Label Classification Heads
        if task_config["multilabel"]:

            prediction_head = MultiLabelTextClassificationHead(
                class_weights=class_weights, num_labels=len(label_list))

        else:
            prediction_head = ExtendedTextClassificationHead(
                class_weights=class_weights, num_labels=len(label_list))

        model = ExtendedAdaptiveModel(
            language_model=language_model,
            prediction_heads=[prediction_head],
            embeds_dropout_prob=embeds_dropout,
            lm_output_types=[task_config["output_type"]],
            device=device)

        # 5. Create an optimizer
        schedule_opts = {
            "name": "LinearWarmup",
            "num_warmup_steps": warmup_steps
        }

        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            learning_rate=lr,
            device=device,
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=epochs,
            use_amp=use_amp,
            grad_acc_steps=grad_acc_steps,
            schedule_opts=schedule_opts)

        # 6. Create an early stopping instance
        early_stopping = None
        if early_stopping_mode != "none":
            early_stopping = EarlyStopping(mode=early_stopping_mode,
                                           min_delta=0.0001,
                                           save_dir=model_dir,
                                           metric=early_stopping_metric,
                                           patience=early_stopping_patience)

        # 7. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it
        # from time to time

        trainer = ExtendedTrainer(model=model,
                                  optimizer=optimizer,
                                  data_silo=data_silo,
                                  epochs=epochs,
                                  n_gpu=n_gpu,
                                  lr_schedule=lr_schedule,
                                  evaluate_every=eval_every,
                                  early_stopping=early_stopping,
                                  device=device,
                                  grad_acc_steps=grad_acc_steps,
                                  evaluator_test=do_eval)

        def score_callback(eval_score, train_loss):
            tune.report(roc_auc_dev=eval_score, train_loss=train_loss)

        # 8. Train the model
        trainer.train(score_callback=score_callback if do_hpo else None)

        # 9. Save model if not saved in early stopping
        model.save(model_dir + "/final_model")
        processor.save(model_dir + "/final_model")

    if do_eval:
        # Load newly trained model or existing model
        if do_train:
            model_dir = model_dir
        else:
            model_dir = Path(model_name_or_path)

        logger.info("###### Eval on TEST SET #####")

        evaluator_test = ExtendedEvaluator(
            data_loader=data_silo.get_data_loader("test"),
            tasks=data_silo.processor.tasks,
            device=device)

        # Load trained model for evaluation
        model = ExtendedAdaptiveModel.load(model_dir, device)
        model.connect_heads_with_processor(data_silo.processor.tasks,
                                           require_labels=True)

        # Evaluate
        results = evaluator_test.eval(model, return_preds_and_labels=True)

        # Log results
        utils.log_results(results,
                          dataset_name="test",
                          steps=len(evaluator_test.data_loader),
                          save_path=model_dir + "/eval_results.txt")

        if print_preds:
            # Print model test predictions
            utils.save_predictions(results,
                                   save_dir=model_dir,
                                   multilabel=task_config["multilabel"])

        if print_dev_preds:
            # Evaluate on dev set, e.g. for threshold tuning
            evaluator_dev = Evaluator(
                data_loader=data_silo.get_data_loader("dev"),
                tasks=data_silo.processor.tasks,
                device=device)
            dev_results = evaluator_dev.eval(model,
                                             return_preds_and_labels=True)
            utils.log_results(dev_results,
                              dataset_name="dev",
                              steps=len(evaluator_dev.data_loader),
                              save_path=model_dir + "/eval_dev_results.txt")

            # Print model dev predictions
            utils.save_predictions(dev_results,
                                   save_dir=model_dir,
                                   multilabel=task_config["multilabel"],
                                   dataset_name="dev")
Esempio n. 30
0
def run_experiment(args):

    logger.info("\n***********************************************"
                f"\n************* Experiment: {args.task.name} ************"
                "\n************************************************")
    ml_logger = MlLogger(tracking_uri=args.logging.mlflow_url)
    ml_logger.init_experiment(
        experiment_name=args.logging.mlflow_experiment,
        run_name=args.logging.mlflow_run_name,
        nested=args.logging.mlflow_nested,
    )

    validate_args(args)
    distributed = bool(args.general.local_rank != -1)

    # Init device and distributed settings
    device, n_gpu = initialize_device_settings(
        use_cuda=args.general.cuda,
        local_rank=args.general.local_rank,
        fp16=args.general.fp16,
    )

    args.parameter.batch_size = int(args.parameter.batch_size //
                                    args.parameter.gradient_accumulation_steps)
    if n_gpu > 1:
        args.parameter.batch_size = args.parameter.batch_size * n_gpu
    set_all_seeds(args.general.seed)

    # Prepare Data
    tokenizer = Tokenizer.load(args.parameter.model,
                               do_lower_case=args.parameter.lower_case)

    processor = Processor.load(
        tokenizer=tokenizer,
        max_seq_len=args.parameter.max_seq_len,
        data_dir=args.general.data_dir,
        **args.task.toDict(
        ),  # args is of type DotMap and needs conversion to std python dicts
    )

    data_silo = DataSilo(
        processor=processor,
        batch_size=args.parameter.batch_size,
        distributed=distributed,
    )

    class_weights = None
    if args.parameter.balance_classes:
        task_names = list(processor.tasks.keys())
        if len(task_names) > 1:
            raise NotImplementedError(
                f"Balancing classes is currently not supported for multitask experiments. Got tasks:  {task_names} "
            )
        class_weights = data_silo.calculate_class_weights(
            task_name=task_names[0])

    model = get_adaptive_model(
        lm_output_type=args.parameter.lm_output_type,
        prediction_heads=args.parameter.prediction_head,
        layer_dims=args.parameter.layer_dims,
        model=args.parameter.model,
        device=device,
        class_weights=class_weights,
        embeds_dropout_prob=args.parameter.embeds_dropout_prob,
    )

    # Init optimizer

    # TODO: warmup linear is sometimes NONE depending on fp16 - is there a neater way to handle this?
    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=args.parameter.learning_rate,
        warmup_proportion=args.parameter.warmup_proportion,
        loss_scale=args.general.loss_scale,
        fp16=args.general.fp16,
        n_batches=len(data_silo.loaders["train"]),
        grad_acc_steps=args.parameter.gradient_accumulation_steps,
        n_epochs=args.parameter.epochs,
    )

    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=args.parameter.epochs,
        n_gpu=n_gpu,
        grad_acc_steps=args.parameter.gradient_accumulation_steps,
        fp16=args.general.fp16,
        local_rank=args.general.local_rank,
        warmup_linear=warmup_linear,
        evaluate_every=args.logging.eval_every,
        device=device,
    )

    model = trainer.train(model)

    model_name = (
        f"{model.language_model.name}-{model.language_model.language}-{args.task.name}"
    )
    processor.save(f"{args.general.output_dir}/{model_name}")
    model.save(f"{args.general.output_dir}/{model_name}")