print_info('see_convergence = True')
    print_info('so just test train acc|f1')
    datasets['train'] = datasets['train'][:100]
    if args.optim == 'adam':
        optimizer = optim.AdamW(model.parameters(),
                                lr=args.lr,
                                weight_decay=args.weight_decay)
    elif args.optim == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr=args.lr,
                              momentum=args.momentum)
    trainer = Trainer(datasets['train'],
                      model,
                      optimizer,
                      loss,
                      args.batch,
                      n_epochs=args.epoch,
                      dev_data=datasets['train'],
                      metrics=metrics,
                      device=device,
                      dev_batch_size=args.test_batch)

    trainer.train()
    exit(1208)

bigram_embedding_param = list(model.bigram_embed.parameters())
gaz_embedding_param = list(model.lattice_embed.parameters())
embedding_param = bigram_embedding_param
if args.lattice:
    gaz_embedding_param = list(model.lattice_embed.parameters())
    embedding_param = embedding_param + gaz_embedding_param
embedding_param_ids = list(map(id, embedding_param))
Esempio n. 2
0
elif arg.task == 'mnli':
    callbacks.append(
        FitlogCallback(
            {
                'dev_matched': data_info.datasets['dev_matched'],
                'dev_mismatched': data_info.datasets['dev_mismatched']
            },
            verbose=1))

trainer = Trainer(train_data=data_info.datasets['train'],
                  model=model,
                  optimizer=optimizer,
                  num_workers=0,
                  batch_size=arg.batch_size,
                  n_epochs=arg.n_epochs,
                  print_every=-1,
                  dev_data=data_info.datasets[arg.devset_name],
                  metrics=AccuracyMetric(pred="pred", target="target"),
                  metric_key='acc',
                  device=[i for i in range(torch.cuda.device_count())],
                  check_code_level=-1,
                  callbacks=callbacks,
                  loss=CrossEntropyLoss(pred="pred", target="target"))
trainer.train(load_best_model=True)

tester = Tester(
    data=data_info.datasets[arg.testset_name],
    model=model,
    metrics=AccuracyMetric(),
    batch_size=arg.batch_size,
    device=[i for i in range(torch.cuda.device_count())],
)
Esempio n. 3
0
]

if arg.task in ['snli']:
    callbacks.append(
        EvaluateCallback(data=data_bundle.datasets[arg.test_dataset_name]))
    # evaluate test set in every epoch if task is snli.

# define trainer
trainer = Trainer(train_data=data_bundle.datasets[arg.train_dataset_name],
                  model=model,
                  optimizer=optimizer,
                  loss=CrossEntropyLoss(),
                  batch_size=torch.cuda.device_count() *
                  arg.batch_size_per_gpu,
                  n_epochs=arg.n_epochs,
                  print_every=-1,
                  dev_data=data_bundle.datasets[arg.dev_dataset_name],
                  metrics=AccuracyMetric(),
                  metric_key='acc',
                  device=[i for i in range(torch.cuda.device_count())],
                  check_code_level=-1,
                  save_path=arg.save_path,
                  callbacks=callbacks)

# train model
trainer.train(load_best_model=True)

# define tester
tester = Tester(
    data=data_bundle.datasets[arg.test_dataset_name],
    model=model,
Esempio n. 4
0
        paths='path/to/quora/data', to_lower=True, seq_len_type=arg.seq_len_type,
        bert_tokenizer=arg.bert_dir, cut_text=512,
        get_index=True, concat='bert',
    )
else:
    raise RuntimeError(f'NOT support {arg.task} task yet!')

# define model
model = BertForNLI(class_num=len(data_info.vocabs[Const.TARGET]), bert_dir=arg.bert_dir)

# define trainer
trainer = Trainer(train_data=data_info.datasets[arg.train_dataset_name], model=model,
                  optimizer=Adam(lr=arg.lr, model_params=model.parameters()),
                  batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
                  n_epochs=arg.n_epochs, print_every=-1,
                  dev_data=data_info.datasets[arg.dev_dataset_name],
                  metrics=AccuracyMetric(), metric_key='acc',
                  device=[i for i in range(torch.cuda.device_count())],
                  check_code_level=-1,
                  save_path=arg.save_path)

# train model
trainer.train(load_best_model=True)

# define tester
tester = Tester(
    data=data_info.datasets[arg.test_dataset_name],
    model=model,
    metrics=AccuracyMetric(),
    batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
    device=[i for i in range(torch.cuda.device_count())],
Esempio n. 5
0
model = CNTNModel(embedding,
                  ns=arg.cntn_ns,
                  k_top=arg.cntn_k_top,
                  num_labels=num_labels,
                  depth=arg.cntn_depth,
                  r=arg.cntn_r)
print(model)

# define trainer
trainer = Trainer(train_data=data_bundle.datasets['train'],
                  model=model,
                  optimizer=Adam(lr=arg.lr, model_params=model.parameters()),
                  loss=CrossEntropyLoss(),
                  batch_size=torch.cuda.device_count() *
                  arg.batch_size_per_gpu,
                  n_epochs=arg.n_epochs,
                  print_every=-1,
                  dev_data=data_bundle.datasets[dev_dict[arg.dataset]],
                  metrics=AccuracyMetric(),
                  metric_key='acc',
                  device=[i for i in range(torch.cuda.device_count())],
                  check_code_level=-1)

# train model
trainer.train(load_best_model=True)

# define tester
tester = Tester(data=data_bundle.datasets[test_dict[arg.dataset]],
                model=model,
                metrics=AccuracyMetric(),
                batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,