Esempio n. 1
0
 def testVariablesSetDevice(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   # Force all Variables to reside on the device.
   with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
     inception.inception_v4(inputs, num_classes)
   with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
     inception.inception_v4(inputs, num_classes)
   for v in tf.get_collection(tf.GraphKeys.VARIABLES, scope='on_cpu'):
     self.assertDeviceEqual(v.device, '/cpu:0')
   for v in tf.get_collection(tf.GraphKeys.VARIABLES, scope='on_gpu'):
     self.assertDeviceEqual(v.device, '/gpu:0')
Esempio n. 2
0
 def testTrainEvalWithReuse(self):
   train_batch_size = 5
   eval_batch_size = 2
   height, width = 150, 150
   num_classes = 1000
   with self.test_session() as sess:
     train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
     inception.inception_v4(train_inputs, num_classes)
     eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
     logits, _ = inception.inception_v4(eval_inputs,
                                        num_classes,
                                        is_training=False,
                                        reuse=True)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.initialize_all_variables())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (eval_batch_size,))
Esempio n. 3
0
 def testBuildWithoutAuxLogits(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   logits, endpoints = inception.inception_v4(inputs, num_classes,
                                              create_aux_logits=False)
   self.assertFalse('AuxLogits' in endpoints)
   self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
   self.assertListEqual(logits.get_shape().as_list(),
                        [batch_size, num_classes])
Esempio n. 4
0
 def testHalfSizeImages(self):
   batch_size = 5
   height, width = 150, 150
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   logits, end_points = inception.inception_v4(inputs, num_classes)
   self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
   self.assertListEqual(logits.get_shape().as_list(),
                        [batch_size, num_classes])
   pre_pool = end_points['Mixed_7d']
   self.assertListEqual(pre_pool.get_shape().as_list(),
                        [batch_size, 3, 3, 1536])
Esempio n. 5
0
 def testEvaluation(self):
   batch_size = 2
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     eval_inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = inception.inception_v4(eval_inputs,
                                        num_classes,
                                        is_training=False)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.initialize_all_variables())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (batch_size,))
Esempio n. 6
0
 def testUnknownBatchSize(self):
   batch_size = 1
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     inputs = tf.placeholder(tf.float32, (None, height, width, 3))
     logits, _ = inception.inception_v4(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [None, num_classes])
     images = tf.random_uniform((batch_size, height, width, 3))
     sess.run(tf.initialize_all_variables())
     output = sess.run(logits, {inputs: images.eval()})
     self.assertEquals(output.shape, (batch_size, num_classes))
Esempio n. 7
0
 def testBuildLogits(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   logits, end_points = inception.inception_v4(inputs, num_classes)
   auxlogits = end_points['AuxLogits']
   predictions = end_points['Predictions']
   self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
   self.assertListEqual(auxlogits.get_shape().as_list(),
                        [batch_size, num_classes])
   self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
   self.assertListEqual(logits.get_shape().as_list(),
                        [batch_size, num_classes])
   self.assertTrue(predictions.op.name.startswith(
       'InceptionV4/Logits/Predictions'))
   self.assertListEqual(predictions.get_shape().as_list(),
                        [batch_size, num_classes])
Esempio n. 8
0
 def testAllEndPointsShapes(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   _, end_points = inception.inception_v4(inputs, num_classes)
   endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                       'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                       'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                       'Mixed_3a': [batch_size, 73, 73, 160],
                       'Mixed_4a': [batch_size, 71, 71, 192],
                       'Mixed_5a': [batch_size, 35, 35, 384],
                       # 4 x Inception-A blocks
                       'Mixed_5b': [batch_size, 35, 35, 384],
                       'Mixed_5c': [batch_size, 35, 35, 384],
                       'Mixed_5d': [batch_size, 35, 35, 384],
                       'Mixed_5e': [batch_size, 35, 35, 384],
                       # Reduction-A block
                       'Mixed_6a': [batch_size, 17, 17, 1024],
                       # 7 x Inception-B blocks
                       'Mixed_6b': [batch_size, 17, 17, 1024],
                       'Mixed_6c': [batch_size, 17, 17, 1024],
                       'Mixed_6d': [batch_size, 17, 17, 1024],
                       'Mixed_6e': [batch_size, 17, 17, 1024],
                       'Mixed_6f': [batch_size, 17, 17, 1024],
                       'Mixed_6g': [batch_size, 17, 17, 1024],
                       'Mixed_6h': [batch_size, 17, 17, 1024],
                       # Reduction-A block
                       'Mixed_7a': [batch_size, 8, 8, 1536],
                       # 3 x Inception-C blocks
                       'Mixed_7b': [batch_size, 8, 8, 1536],
                       'Mixed_7c': [batch_size, 8, 8, 1536],
                       'Mixed_7d': [batch_size, 8, 8, 1536],
                       # Logits and predictions
                       'AuxLogits': [batch_size, num_classes],
                       'PreLogitsFlatten': [batch_size, 1536],
                       'Logits': [batch_size, num_classes],
                       'Predictions': [batch_size, num_classes]}
   self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
   for endpoint_name in endpoints_shapes:
     expected_shape = endpoints_shapes[endpoint_name]
     self.assertTrue(endpoint_name in end_points)
     self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                          expected_shape)