def __init__(self, pipeline: Pipeline, network: BaseNetwork, epochs: int, train_steps_per_epoch: Optional[int] = None, eval_steps_per_epoch: Optional[int] = None, traces: Union[None, Trace, Scheduler[Trace], Iterable[Union[Trace, Scheduler[Trace]]]] = None, log_steps: Optional[int] = 100, monitor_names: Union[None, str, Iterable[str]] = None): self.traces_in_use = [] self.filepath = os.path.realpath( inspect.stack()[2].filename) # Record this for history tracking assert log_steps is None or log_steps >= 0, \ "log_steps must be None or positive (or 0 to disable only train logging)" self.monitor_names = to_set(monitor_names) | network.get_loss_keys() self.system = System(network=network, pipeline=pipeline, traces=to_list(traces), log_steps=log_steps, total_epochs=epochs, train_steps_per_epoch=train_steps_per_epoch, eval_steps_per_epoch=eval_steps_per_epoch, system_config=self.fe_summary())
def __init__(self, pipeline: Pipeline, network: BaseNetwork, epochs: int, max_train_steps_per_epoch: Optional[int] = None, max_eval_steps_per_epoch: Optional[int] = None, traces: Union[None, Trace, Scheduler[Trace], Iterable[Union[Trace, Scheduler[Trace]]]] = None, log_steps: Optional[int] = 100, monitor_names: Union[None, str, Iterable[str]] = None): self.traces_in_use = [] assert log_steps is None or log_steps >= 0, \ "log_steps must be None or positive (or 0 to disable only train logging)" self.monitor_names = to_set(monitor_names) | network.get_loss_keys() self.system = System(network=network, pipeline=pipeline, traces=to_list(traces), log_steps=log_steps, total_epochs=epochs, max_train_steps_per_epoch=max_train_steps_per_epoch, max_eval_steps_per_epoch=max_eval_steps_per_epoch, system_config=self.fe_summary())
class Estimator: """One class to rule them all. Estimator is the highest level class within FastEstimator. It is the class which is invoked to actually train (estimator.fit) or test (estimator.test) models. It wraps `Pipeline`, `Network`, `Trace` objects together and defines the whole optimization process. If the data fed into pipeline is a TensorFlow Dataset, then the parameters `train_steps_per_epoch` and `eval_steps_per_epoch` can only reduce the number of steps per epoch. If these parameters are higher than the dimension of the stated Dataset then the whole Dataset will be used. Args: pipeline: An fe.Pipeline object that defines the data processing workflow. network: An fe.Network object that contains models and other training graph definitions. epochs: The number of epochs to run. train_steps_per_epoch: Training will be cut short or extended to complete N steps even if loader is not yet exhausted. If None, all data will be used. eval_steps_per_epoch: Evaluation will be cut short or extended to complete N steps even if loader is not yet exhausted. If None, all data will be used. traces: What Traces to run during training. If None, only the system's default Traces will be included. log_steps: Frequency (in steps) for printing log messages. 0 to disable all step-based printing (though epoch information will still print). None to completely disable printing. monitor_names: Additional keys from the data dictionary to be written into the logs. """ monitor_names: Set[str] traces_in_use: List[Union[Trace, Scheduler[Trace]]] system: System filepath: str def __init__(self, pipeline: Pipeline, network: BaseNetwork, epochs: int, train_steps_per_epoch: Optional[int] = None, eval_steps_per_epoch: Optional[int] = None, traces: Union[None, Trace, Scheduler[Trace], Iterable[Union[Trace, Scheduler[Trace]]]] = None, log_steps: Optional[int] = 100, monitor_names: Union[None, str, Iterable[str]] = None): self.traces_in_use = [] self.filepath = os.path.realpath( inspect.stack()[2].filename) # Record this for history tracking assert log_steps is None or log_steps >= 0, \ "log_steps must be None or positive (or 0 to disable only train logging)" self.monitor_names = to_set(monitor_names) | network.get_loss_keys() self.system = System(network=network, pipeline=pipeline, traces=to_list(traces), log_steps=log_steps, total_epochs=epochs, train_steps_per_epoch=train_steps_per_epoch, eval_steps_per_epoch=eval_steps_per_epoch, system_config=self.fe_summary()) @property def pipeline(self) -> Pipeline: return self.system.pipeline @property def network(self) -> BaseNetwork: return self.system.network @property def traces(self) -> List[Union[Trace, Scheduler[Trace]]]: return self.system.traces def fit(self, summary: Optional[str] = None, warmup: bool = True, eager: bool = False) -> Optional[Summary]: """Train the network for the number of epochs specified by the estimator's constructor. Args: summary: A name for the experiment. If provided, the log history will be recorded in-memory and returned as a summary object at the end of training. warmup: Whether to perform warmup before training begins. The warmup procedure will test one step at every epoch where schedulers cause the execution graph to change. This can take some time up front, but can also save significant heartache on epoch 300 when the training unexpectedly fails due to a tensor size mismatch. eager: Whether to run the training in eager mode. This is only related to TensorFlow training because PyTorch by nature is always in eager mode. Returns: A summary object containing the training history for this session iff a `summary` name was provided. """ os.environ[ 'TF_CPP_MIN_LOG_LEVEL'] = '1' # Prevent tf from constantly printing useless information draw() self.system.reset(summary, self.fe_summary()) self._prepare_traces(run_modes={"train", "eval"}) if warmup: self._warmup(eager=eager) self._start(run_modes={"train", "eval"}, eager=eager) return self.system.summary or None def _prepare_traces(self, run_modes: Set[str]) -> None: """Prepare information about the traces for execution. Add default traces into the traces_in_use list, also prints a warning if no model saver trace is detected. Args: run_modes: The current execution modes. """ self.traces_in_use = [trace for trace in self.traces] if self.system.log_steps is not None: self.traces_in_use.append(Logger()) # Look for any monitor names which should be automagically added. trace_outputs = set() extra_monitor_keys = set() for trace in sort_traces(get_current_items(self.traces_in_use, run_modes=run_modes), ds_ids=[]): trace_outputs.update(trace.get_outputs(ds_ids=[])) extra_monitor_keys.update(trace.fe_monitor_names - trace_outputs) # Add the essential traces if "train" in run_modes: self.traces_in_use.insert( 0, TrainEssential(monitor_names=self.monitor_names.union( extra_monitor_keys))) no_save_warning = True for trace in get_current_items(self.traces_in_use, run_modes=run_modes): if isinstance(trace, (ModelSaver, BestModelSaver)): no_save_warning = False if no_save_warning: print( "FastEstimator-Warn: No ModelSaver Trace detected. Models will not be saved." ) if "eval" in run_modes and "eval" in self.pipeline.get_modes(): self.traces_in_use.insert( 1, EvalEssential(monitor_names=self.monitor_names.union( extra_monitor_keys))) if "test" in run_modes and "test" in self.pipeline.get_modes(): self.traces_in_use.insert( 0, TestEssential(monitor_names=self.monitor_names.union( extra_monitor_keys))) # insert system instance to trace for trace in get_current_items(self.traces_in_use, run_modes=run_modes): trace.system = self.system def test(self, summary: Optional[str] = None, eager: bool = False) -> Optional[Summary]: """Run the pipeline / network in test mode for one epoch. Args: summary: A name for the experiment. If provided, the log history will be recorded in-memory and returned as a summary object at the end of training. If None, the default value will be whatever `summary` name was most recently provided to this Estimator's .fit() or .test() methods. eager: Whether to run the training in eager mode. This is only related to TensorFlow training because PyTorch by nature is always in eager mode. Returns: A summary object containing the training history for this session iff the `summary` name is not None (after considering the default behavior above). """ os.environ[ 'TF_CPP_MIN_LOG_LEVEL'] = '1' # Prevent tf from constantly printing useless information self.system.reset_for_test(summary) self._prepare_traces(run_modes={"test"}) self._start(run_modes={"test"}, eager=eager) return self.system.summary or None def _warmup(self, eager: bool = True) -> None: """Perform a test run of each pipeline and network signature epoch to make sure that training won't fail later. Traces are not executed in the warmup since they are likely to contain state variables which could become corrupted by running extra steps. Args: eager: Whether to run the training in eager mode. This is only related to TensorFlow training because PyTorch by nature is always in eager mode. """ all_traces = get_current_items(self.traces_in_use, run_modes={"train", "eval"}) sort_traces( all_traces, ds_ids=[] ) # This ensures that the traces can sort properly for on_begin and on_end monitor_names = self.monitor_names for mode in self.pipeline.get_modes() - {"test"}: scheduled_items = self.pipeline.get_scheduled_items( mode) + self.network.get_scheduled_items( mode) + self.get_scheduled_items(mode) signature_epochs = get_signature_epochs(scheduled_items, self.system.total_epochs, mode=mode) epochs_with_data = self.pipeline.get_epochs_with_data( total_epochs=self.system.total_epochs, mode=mode) for epoch in signature_epochs: if epoch not in epochs_with_data: continue ds_ids = self.pipeline.get_ds_ids(epoch, mode) for ds_id in ds_ids: network_output_keys = self.network.get_all_output_keys( mode, epoch, ds_id=ds_id) network_input_keys = self.network.get_effective_input_keys( mode, epoch, ds_id=ds_id) trace_input_keys = set() trace_output_keys = {"*"} traces = get_current_items(self.traces_in_use, run_modes=mode, epoch=epoch, ds_id=ds_id) for idx, trace in enumerate(traces): if idx > 0: # ignore TrainEssential and EvalEssential's inputs for unmet requirement checking trace_input_keys.update(trace.inputs) trace_output_keys.update( trace.get_outputs(ds_ids=ds_ids)) # key checking with self.pipeline( mode=mode, epoch=epoch, ds_id=ds_id, steps_per_epoch=None, output_keys=trace_input_keys - network_output_keys | network_input_keys) as loader: loader = self._configure_loader(loader) with Suppressor(): if isinstance(loader, tf.data.Dataset): batch = list(loader.take(1))[0] else: batch = next(iter(loader)) batch = self._configure_tensor(loader, batch) assert isinstance( batch, dict ), "please make sure data output format is dictionary" pipeline_output_keys = to_set(batch.keys()) monitor_names = monitor_names - (pipeline_output_keys | network_output_keys) unmet_requirements = trace_input_keys - ( pipeline_output_keys | network_output_keys | trace_output_keys) assert not unmet_requirements, \ "found missing key(s) during epoch {} mode {} ds_id {}: {}".format(epoch, mode, ds_id, unmet_requirements) sort_traces(traces, ds_ids=ds_ids, available_outputs=pipeline_output_keys | network_output_keys) trace_input_keys.update(traces[0].inputs) self.network.load_epoch(mode, epoch, ds_id, output_keys=trace_input_keys, warmup=True, eager=eager) self.network.run_step(batch) self.network.unload_epoch() assert not monitor_names, "found missing key(s): {}".format( monitor_names) def get_scheduled_items(self, mode: str) -> List[Any]: """Get a list of items considered for scheduling. Args: mode: Current execution mode. Returns: List of schedulable items in estimator. """ return self.traces_in_use def _start(self, run_modes: Set[str], eager: bool) -> None: """The outer training loop. This method invokes the trace on_begin method, runs the necessary 'train' and 'eval' epochs, and then invokes the trace on_end method. Args: run_modes: The current execution modes. eager: Whether to run the training in eager mode. This is only related to TensorFlow training because PyTorch by nature is always in eager mode. """ all_traces = sort_traces(get_current_items(self.traces_in_use, run_modes=run_modes), ds_ids=[]) with NonContext() if fe.fe_history_path is False else HistoryRecorder( self.system, self.filepath, db_path=fe.fe_history_path): try: self._run_traces_on_begin(traces=all_traces) if "train" in run_modes or "eval" in run_modes: # If the training is re-starting from a restore wizard, it should re-run the last eval epoch if self.system.epoch_idx > 0 and "eval" in self.pipeline.get_modes( epoch=self.system.epoch_idx): self.system.mode = "eval" self._run_epoch(eager=eager) for self.system.epoch_idx in range( self.system.epoch_idx + 1, self.system.total_epochs + 1): if "train" in self.pipeline.get_modes( epoch=self.system.epoch_idx): self.system.mode = "train" self._run_epoch(eager=eager) if "eval" in self.pipeline.get_modes( epoch=self.system.epoch_idx): self.system.mode = "eval" self._run_epoch(eager=eager) else: self._run_epoch(eager=eager) except EarlyStop: pass # On early stopping we still want to run the final traces and return results self._run_traces_on_end(traces=all_traces) def _run_epoch(self, eager: bool) -> None: """A method to perform an epoch of activity. This method requires that the current mode and epoch already be specified within the self.system object. Args: eager: Whether to run the training in eager mode. This is only related to TensorFlow training because PyTorch by nature is always in eager mode. """ ds_ids = self.pipeline.get_ds_ids(self.system.epoch_idx, self.system.mode) epoch_traces = sort_traces(get_current_items( self.traces_in_use, run_modes=self.system.mode, epoch=self.system.epoch_idx), ds_ids=ds_ids) self._run_traces_on_epoch_begin(traces=epoch_traces) self.system.batch_idx = None end_epoch_data = Data( ) # We will aggregate data over on_ds_end and put it into on_epoch_end for printing # run for each dataset for self.system.ds_id in ds_ids: ds_traces = get_current_items(self.traces_in_use, run_modes=self.system.mode, epoch=self.system.epoch_idx, ds_id=self.system.ds_id) trace_input_keys = set() for ds_trace in ds_traces: trace_input_keys.update(ds_trace.inputs) network_input_keys = self.network.get_effective_input_keys( mode=self.system.mode, epoch=self.system.epoch_idx, ds_id=self.system.ds_id) network_output_keys = self.network.get_all_output_keys( mode=self.system.mode, epoch=self.system.epoch_idx, ds_id=self.system.ds_id) self.network.load_epoch(mode=self.system.mode, epoch=self.system.epoch_idx, ds_id=self.system.ds_id, output_keys=trace_input_keys, eager=eager) with self.pipeline( mode=self.system.mode, epoch=self.system.epoch_idx, ds_id=self.system.ds_id, steps_per_epoch=self.system.steps_per_epoch, output_keys=trace_input_keys - network_output_keys | network_input_keys) as loader: loader = self._configure_loader(loader) iterator = iter(loader) with Suppressor(): batch = next(iterator) ds_traces = sort_traces(ds_traces, available_outputs=to_set(batch.keys()) | network_output_keys, ds_ids=ds_ids) per_ds_traces = [ trace for trace in ds_traces if isinstance(trace, PerDSTrace) ] self._run_traces_on_ds_begin(traces=per_ds_traces) while True: try: if self.system.mode == "train": self.system.update_global_step() self.system.update_batch_idx() batch = self._configure_tensor(loader, batch) self._run_traces_on_batch_begin(batch, traces=ds_traces) batch, prediction = self.network.run_step(batch) self._run_traces_on_batch_end(batch, prediction, traces=ds_traces) if isinstance(loader, DataLoader) and ( (self.system.batch_idx == self.system.train_steps_per_epoch and self.system.mode == "train") or (self.system.batch_idx == self.system.eval_steps_per_epoch and self.system.mode == "eval")): raise StopIteration with Suppressor(): batch = next(iterator) except StopIteration: break self._run_traces_on_ds_end(traces=per_ds_traces, data=end_epoch_data) self.network.unload_epoch() self._run_traces_on_epoch_end(traces=epoch_traces, data=end_epoch_data) def _configure_loader( self, loader: Union[DataLoader, tf.data.Dataset] ) -> Union[DataLoader, tf.data.Dataset]: """A method to configure a given dataloader for use with this Estimator's Network. This method will ensure that the `loader` returns the correct data type (tf.Tensor or torch.Tensor) depending on the requirements of the Network. It also handles issues with multi-gpu data sharding. Args: loader: A data loader to be modified. Returns: The potentially modified dataloader to be used for training. """ new_loader = loader if isinstance(new_loader, DataLoader) and isinstance( self.network, TFNetwork): add_batch = bool(new_loader.batch_size) if hasattr(loader, 'fe_postprocess_fn' ) and loader.fe_postprocess_fn is not None: # The user is manually batching data and running ops on data batches. No reliable way to shortcut this # since ops might require specific batch composition. data_instance = next(iter(loader)) add_batch = False else: # No batch-based ops so we can try and just use the OpDataset to more quickly get our data summary data_instance = loader.dataset[0] if isinstance(data_instance, list): # This is a batched dataset data_instance = data_instance[0] add_batch = True if isinstance(data_instance, FilteredData): # We got unlucky and drew filtered data as the zeroth element. Fall back to a slower but more robust # analysis of the batch data_instance = next(iter(loader)) add_batch = False data_instance = to_tensor(data_instance, target_type="tf") data_type = to_type(data_instance) data_shape = to_shape(data_instance, add_batch=add_batch, exact_shape=False) new_loader = tf.data.Dataset.from_generator( lambda: loader, data_type, output_shapes=data_shape) new_loader = new_loader.prefetch(1) if isinstance(new_loader, tf.data.Dataset): if self.system.train_steps_per_epoch and self.system.mode == "train": new_loader = new_loader.take(self.system.train_steps_per_epoch) if self.system.eval_steps_per_epoch and self.system.mode == "eval": new_loader = new_loader.take(self.system.eval_steps_per_epoch) if isinstance(tf.distribute.get_strategy(), tf.distribute.MirroredStrategy) and isinstance( self.network, TFNetwork) and not isinstance( new_loader, DistributedDataset): # The default autoshard policy is file, changing it to data to avoid warning options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA new_loader = new_loader.with_options(options) new_loader = tf.distribute.get_strategy( ).experimental_distribute_dataset(new_loader) return new_loader def _configure_tensor(self, loader: Union[DataLoader, tf.data.Dataset], batch: Dict[str, Any]) -> Dict[str, Any]: """A function to convert a batch of tf.Tensors to torch.Tensors if required. Returns: Either the original `batch`, or the `batch` converted to torch.Tensors if required. """ # TODO - if user has torch loader but custom collate that doesn't return torch tensor, need to cast here if isinstance(loader, tf.data.Dataset) and isinstance( self.network, TorchNetwork): batch = to_tensor(batch, target_type="torch") return batch def _run_traces_on_begin(self, traces: Iterable[Trace]) -> None: """Invoke the on_begin methods of given traces. Args: traces: List of traces. """ data = Data() restore = None for trace in traces: # Delay RestoreWizard until the end so that it can overwrite everyone's on_begin methods if isinstance(trace, RestoreWizard): restore = trace continue # Restore does need to run before the logger though if isinstance(trace, Logger) and restore: restore.on_begin(data) restore = None trace.on_begin(data) if restore: restore.on_begin(data) self._check_early_exit() def _run_traces_on_epoch_begin(self, traces: Iterable[Trace]) -> None: """Invoke the on_epoch_begin methods of given traces. Args: traces: List of traces. """ data = Data() for trace in traces: trace.on_epoch_begin(data) self._check_early_exit() def _run_traces_on_ds_begin(self, traces: Iterable[PerDSTrace]) -> None: """Invoke the on_ds_begin methods of given traces. Args: traces: List of traces. """ data = Data() for trace in traces: trace.on_ds_begin(data) self._check_early_exit() def _run_traces_on_batch_begin(self, batch: Dict[str, Any], traces: Iterable[Trace]) -> None: """Invoke the on_batch_begin methods of given traces. Args: batch: The batch data which was provided by the pipeline. traces: List of traces. """ data = Data(batch) for trace in traces: trace.on_batch_begin(data) self._check_early_exit() def _run_traces_on_batch_end(self, batch: Dict[str, Any], prediction: Dict[str, Any], traces: Iterable[Trace]) -> None: """Invoke the on_batch_end methods of given traces. Args: batch: The batch data which was provided by the pipeline. prediction: The prediction data which was generated by the network. traces: List of traces. """ data = Data(ChainMap(prediction, batch)) for trace in traces: trace.on_batch_end(data) self._check_early_exit() def _run_traces_on_ds_end(self, traces: Iterable[PerDSTrace], data: Data) -> None: """Invoke the on_ds_begin methods of given traces. Args: traces: List of traces. data: Data into which to record results. """ for trace in traces: trace.on_ds_end(data) self._check_early_exit() def _run_traces_on_epoch_end(self, traces: Iterable[Trace], data: Data) -> None: """Invoke the on_epoch_end methods of of given traces. Args: traces: List of traces. data: Data into which to record results. """ for trace in traces: trace.on_epoch_end(data) self._check_early_exit() @staticmethod def _run_traces_on_end(traces: Iterable[Trace]) -> None: """Invoke the on_end methods of given traces. Args: traces: List of traces. """ data = Data() traceability = None for trace in traces: if isinstance(trace, Traceability): # Delay traceability until the end so that it can capture all data including the total training time traceability = trace continue trace.on_end(data) if traceability: traceability.on_end(data) def _check_early_exit(self) -> None: """Determine whether training should be prematurely aborted. Raises: EarlyStop: If the system.stop_training flag has been set to True. """ if self.system.stop_training: raise EarlyStop
class Estimator: """One class to rule them all. Estimator is the highest level class within FastEstimator. It is the class which is invoked to actually train (estimator.fit) or test (estimator.test) models. It wraps `Pipeline`, `Network`, `Trace` objects together and defines the whole optimization process. Args: pipeline: An fe.Pipeline object that defines the data processing workflow. network: An fe.Network object that contains models and other training graph definitions. epochs: The number of epochs to run. max_train_steps_per_epoch: Training will complete after n steps even if loader is not yet exhausted. If None, all data will be used. max_eval_steps_per_epoch: Evaluation will complete after n steps even if loader is not yet exhausted. If None, all data will be used. traces: What Traces to run during training. If None, only the system's default Traces will be included. log_steps: Frequency (in steps) for printing log messages. 0 to disable all step-based printing (though epoch information will still print). None to completely disable printing. monitor_names: Additional keys from the data dictionary to be written into the logs. """ monitor_names: Set[str] traces_in_use: List[Union[Trace, Scheduler[Trace]]] system: System def __init__(self, pipeline: Pipeline, network: BaseNetwork, epochs: int, max_train_steps_per_epoch: Optional[int] = None, max_eval_steps_per_epoch: Optional[int] = None, traces: Union[None, Trace, Scheduler[Trace], Iterable[Union[Trace, Scheduler[Trace]]]] = None, log_steps: Optional[int] = 100, monitor_names: Union[None, str, Iterable[str]] = None): self.traces_in_use = [] assert log_steps is None or log_steps >= 0, \ "log_steps must be None or positive (or 0 to disable only train logging)" self.monitor_names = to_set(monitor_names) | network.get_loss_keys() self.system = System(network=network, pipeline=pipeline, traces=to_list(traces), log_steps=log_steps, total_epochs=epochs, max_train_steps_per_epoch=max_train_steps_per_epoch, max_eval_steps_per_epoch=max_eval_steps_per_epoch, system_config=self.fe_summary()) @property def pipeline(self) -> Pipeline: return self.system.pipeline @property def network(self) -> BaseNetwork: return self.system.network @property def traces(self) -> List[Union[Trace, Scheduler[Trace]]]: return self.system.traces def fit(self, summary: Optional[str] = None, warmup: Union[bool, str] = True) -> Optional[Summary]: """Train the network for the number of epochs specified by the estimator's constructor. Args: summary: A name for the experiment. If provided, the log history will be recorded in-memory and returned as a summary object at the end of training. warmup: Whether to perform warmup before training begins. The warmup procedure will test one step at every epoch where schedulers cause the execution graph to change. This can take some time up front, but can also save significant heartache on epoch 300 when the training unexpectedly fails due to a tensor size mismatch. When set to "debug", the warmup will be performed in eager execution for easier debugging. Returns: A summary object containing the training history for this session iff a `summary` name was provided. """ draw() self.system.reset(summary, self.fe_summary()) self._prepare_traces(run_modes={"train", "eval"}) if warmup: self._warmup(warmup=warmup) self._start(run_modes={"train", "eval"}) return self.system.summary or None def _prepare_traces(self, run_modes: Set[str]) -> None: """Prepare information about the traces for training. Add default traces into the traces_in_use list, also prints a warning if no model saver trace is detected. Args: run_modes: The current execution modes. """ self.traces_in_use = [trace for trace in self.traces] if self.system.log_steps is not None: self.traces_in_use.append(Logger()) # Look for any monitor names which should be automagically added. trace_outputs = set() extra_monitor_keys = set() for trace in sort_traces(get_current_items(self.traces_in_use, run_modes=run_modes)): trace_outputs.update(trace.outputs) extra_monitor_keys.update(trace.fe_monitor_names - trace_outputs) # Add the essential traces if "train" in run_modes: self.traces_in_use.insert(0, TrainEssential(monitor_names=self.monitor_names.union(extra_monitor_keys))) no_save_warning = True for trace in get_current_items(self.traces_in_use, run_modes=run_modes): if isinstance(trace, (ModelSaver, BestModelSaver)): no_save_warning = False if no_save_warning: print("FastEstimator-Warn: No ModelSaver Trace detected. Models will not be saved.") if "eval" in run_modes and "eval" in self.pipeline.get_modes(): self.traces_in_use.insert(1, EvalEssential(monitor_names=self.monitor_names.union(extra_monitor_keys))) # insert system instance to trace for trace in get_current_items(self.traces_in_use, run_modes=run_modes): trace.system = self.system def test(self, summary: Optional[str] = None) -> Optional[Summary]: """Run the pipeline / network in test mode for one epoch. Args: summary: A name for the experiment. If provided, the log history will be recorded in-memory and returned as a summary object at the end of training. If None, the default value will be whatever `summary` name was most recently provided to this Estimator's .fit() or .test() methods. Returns: A summary object containing the training history for this session iff the `summary` name is not None (after considering the default behavior above). """ self.system.reset_for_test(summary) self._prepare_traces(run_modes={"test"}) self._start(run_modes={"test"}) return self.system.summary or None def _warmup(self, warmup: Union[bool, str]) -> None: """Perform a test run of each pipeline and network signature epoch to make sure that training won't fail later. Traces are not executed in the warmup since they are likely to contain state variables which could become corrupted by running extra steps. Args: warmup: Warmup arg specified by estimator.fit. """ all_traces = get_current_items(self.traces_in_use, run_modes={"train", "eval"}) sort_traces(all_traces) # This ensures that the traces can sort properly for on_begin and on_end monitor_names = self.monitor_names for mode in self.pipeline.get_modes() - {"test"}: scheduled_items = self.pipeline.get_scheduled_items(mode) + self.network.get_scheduled_items( mode) + self.get_scheduled_items(mode) signature_epochs = get_signature_epochs(scheduled_items, self.system.total_epochs, mode=mode) epochs_with_data = self.pipeline.get_epochs_with_data(total_epochs=self.system.total_epochs, mode=mode) for epoch in signature_epochs: if epoch not in epochs_with_data: continue # key checking loader = self._configure_loader(self.pipeline.get_loader(mode, epoch)) with Suppressor(): if isinstance(loader, tf.data.Dataset): batch = list(loader.take(1))[0] else: batch = next(iter(loader)) batch = self._configure_tensor(loader, batch) assert isinstance(batch, dict), "please make sure data output format is dictionary" pipeline_output_keys = to_set(batch.keys()) network_output_keys = self.network.get_all_output_keys(mode, epoch) trace_input_keys = set() trace_output_keys = {"*"} traces = get_current_items(self.traces_in_use, run_modes=mode, epoch=epoch) for idx, trace in enumerate(traces): if idx > 0: # ignore TrainEssential and EvalEssential's inputs for unmet requirement checking trace_input_keys.update(trace.inputs) trace_output_keys.update(trace.outputs) monitor_names = monitor_names - (pipeline_output_keys | network_output_keys) unmet_requirements = trace_input_keys - (pipeline_output_keys | network_output_keys | trace_output_keys) assert not unmet_requirements, \ "found missing key(s) during epoch {} mode {}: {}".format(epoch, mode, unmet_requirements) sort_traces(traces, available_outputs=pipeline_output_keys | network_output_keys) trace_input_keys.update(traces[0].inputs) self.network.load_epoch(mode, epoch, output_keys=trace_input_keys, warmup=warmup) self.network.run_step(batch) self.network.unload_epoch() assert not monitor_names, "found missing key(s): {}".format(monitor_names) def get_scheduled_items(self, mode: str) -> List[Any]: """Get a list of items considered for scheduling. Args: mode: Current execution mode. Returns: List of schedulable items in estimator. """ return self.traces_in_use def _start(self, run_modes: Set[str]) -> None: """The outer training loop. This method invokes the trace on_begin method, runs the necessary 'train' and 'eval' epochs, and then invokes the trace on_end method. Args: run_modes: The current execution modes. """ all_traces = sort_traces(get_current_items(self.traces_in_use, run_modes=run_modes)) try: self._run_traces_on_begin(traces=all_traces) if "train" in run_modes or "eval" in run_modes: for self.system.epoch_idx in range(self.system.epoch_idx + 1, self.system.total_epochs + 1): if "train" in self.pipeline.get_modes(epoch=self.system.epoch_idx): self.system.mode = "train" self._run_epoch() if "eval" in self.pipeline.get_modes(epoch=self.system.epoch_idx): self.system.mode = "eval" self._run_epoch() else: self._run_epoch() except EarlyStop: pass # On early stopping we still want to run the final traces and return results self._run_traces_on_end(traces=all_traces) def _run_epoch(self) -> None: """A method to perform an epoch of activity. This method requires that the current mode and epoch already be specified within the self.system object. """ traces = get_current_items(self.traces_in_use, run_modes=self.system.mode, epoch=self.system.epoch_idx) trace_input_keys = set() for trace in traces: trace_input_keys.update(trace.inputs) loader = self._configure_loader(self.pipeline.get_loader(self.system.mode, self.system.epoch_idx)) iterator = iter(loader) self.network.load_epoch(mode=self.system.mode, epoch=self.system.epoch_idx, output_keys=trace_input_keys) self.system.batch_idx = None with Suppressor(): batch = next(iterator) traces = sort_traces( traces, available_outputs=to_set(batch.keys()) | self.network.get_all_output_keys(self.system.mode, self.system.epoch_idx)) self._run_traces_on_epoch_begin(traces=traces) while True: try: if self.system.mode == "train": self.system.update_global_step() self.system.update_batch_idx() batch = self._configure_tensor(loader, batch) self._run_traces_on_batch_begin(batch, traces=traces) batch, prediction = self.network.run_step(batch) self._run_traces_on_batch_end(batch, prediction, traces=traces) if isinstance(loader, DataLoader) and ( (self.system.batch_idx == self.system.max_train_steps_per_epoch and self.system.mode == "train") or (self.system.batch_idx == self.system.max_eval_steps_per_epoch and self.system.mode == "eval")): raise StopIteration with Suppressor(): batch = next(iterator) except StopIteration: break self._run_traces_on_epoch_end(traces=traces) self.network.unload_epoch() def _configure_loader(self, loader: Union[DataLoader, tf.data.Dataset]) -> Union[DataLoader, tf.data.Dataset]: """A method to configure a given dataloader for use with this Estimator's Network. This method will ensure that the `loader` returns the correct data type (tf.Tensor or torch.Tensor) depending on the requirements of the Network. It also handles issues with multi-gpu data sharding. Args: loader: A data loader to be modified. Returns: The potentially modified dataloader to be used for training. """ new_loader = loader if isinstance(new_loader, DataLoader) and isinstance(self.network, TFNetwork): add_batch = True if hasattr(loader.dataset, "dataset") and isinstance(loader.dataset.dataset, BatchDataset): add_batch = False batch = to_tensor(loader.dataset[0], target_type="tf") data_type = to_type(batch) data_shape = to_shape(batch, add_batch=add_batch, exact_shape=False) new_loader = tf.data.Dataset.from_generator(lambda: loader, data_type, output_shapes=data_shape) new_loader = new_loader.prefetch(1) if isinstance(new_loader, tf.data.Dataset): if self.system.max_train_steps_per_epoch and self.system.mode == "train": new_loader = new_loader.take(self.system.max_train_steps_per_epoch) if self.system.max_eval_steps_per_epoch and self.system.mode == "eval": new_loader = new_loader.take(self.system.max_eval_steps_per_epoch) if isinstance(tf.distribute.get_strategy(), tf.distribute.MirroredStrategy) and not isinstance(new_loader, DistributedDataset): new_loader = tf.distribute.get_strategy().experimental_distribute_dataset(new_loader) return new_loader def _configure_tensor(self, loader: Union[DataLoader, tf.data.Dataset], batch: Dict[str, Any]) -> Dict[str, Any]: """A function to convert a batch of tf.Tensors to torch.Tensors if required. Returns: Either the original `batch`, or the `batch` converted to torch.Tensors if required. """ if isinstance(loader, tf.data.Dataset) and isinstance(self.network, TorchNetwork): batch = to_tensor(batch, target_type="torch") return batch def _run_traces_on_begin(self, traces: Iterable[Trace]) -> None: """Invoke the on_begin methods of given traces. Args: traces: List of traces. """ data = Data() for trace in traces: trace.on_begin(data) self._check_early_exit() def _run_traces_on_epoch_begin(self, traces: Iterable[Trace]) -> None: """Invoke the on_epoch_begin methods of given traces. Args: traces: List of traces. """ data = Data() for trace in traces: trace.on_epoch_begin(data) self._check_early_exit() def _run_traces_on_batch_begin(self, batch: Dict[str, Any], traces: Iterable[Trace]) -> None: """Invoke the on_batch_begin methods of given traces. Args: batch: The batch data which was provided by the pipeline. traces: List of traces. """ data = Data(batch) for trace in traces: trace.on_batch_begin(data) self._check_early_exit() def _run_traces_on_batch_end(self, batch: Dict[str, Any], prediction: Dict[str, Any], traces: Iterable[Trace]) -> None: """Invoke the on_batch_end methods of given traces. Args: batch: The batch data which was provided by the pipeline. prediction: The prediction data which was generated by the network. traces: List of traces. """ data = Data(ChainMap(prediction, batch)) for trace in traces: trace.on_batch_end(data) self._check_early_exit() def _run_traces_on_epoch_end(self, traces: Iterable[Trace]) -> None: """Invoke the on_epoch_end methods of of given traces. Args: traces: List of traces. """ data = Data() for trace in traces: trace.on_epoch_end(data) self._check_early_exit() @staticmethod def _run_traces_on_end(traces: Iterable[Trace]) -> None: """Invoke the on_end methods of given traces. Args: traces: List of traces. """ data = Data() traceability = None for trace in traces: if isinstance(trace, Traceability): # Delay traceability until the end so that it can capture all data including the total training time traceability = trace continue trace.on_end(data) if traceability: traceability.on_end(data) def _check_early_exit(self) -> None: """Determine whether training should be prematurely aborted. Raises: EarlyStop: If the system.stop_training flag has been set to True. """ if self.system.stop_training: raise EarlyStop