Esempio n. 1
0
def main(args):
    if args.prefix:
        individual_bams = ["%s/%s%s" % (args.dir,run,args.suffix) for run in args.prefix.split("_")]
        new_id = args.new_id if args.new_id else args.prefix
    elif args.bams:
        individual_bams = args.bams.split(",")
        new_id = args.new_id if args.new_id else "_".join([bam.split("/")[-1].replace(args.suffix,"") for bam in individual_bams])
    elif (not args.prefix and not args.bams) or (args.prefix and args.bams):
        sys.stderr.write("Need wither '--bams' or '--prefix'... Exiting!\n")
        quit()
    if len(individual_bams)==1:
        sys.stderr.write("Need more than one bam... Exiting!\n")
        quit()
    for bam in individual_bams:
        fm.filecheck(bam)
    new_bamfile = "%s/%s%s" % (args.dir,new_id,args.suffix)
    tmp_bamfile = fm.get_random_file()
    tmp_file = fm.get_random_file()
    with open(tmp_file,"w") as O:
        for l in fm.cmd_out("samtools view -H %s" % individual_bams[0]):
            row = l.strip().split("\t")
            if row[0]=="@RG":
                continue
                row[1] = "ID:%s" % new_id
                row[2] = "SM:%s" % new_id
            O.write("%s\n" % "\t".join(row))

    fm.run_cmd("samtools merge -@ %s - %s | samtools reheader -i %s - | samtools addreplacerg -@ %s - -r 'ID:%s\\tSM:%s\\tPL:Illumina' -o %s" % (
        args.threads," ".join(individual_bams), tmp_file, args.threads,new_id, new_id, new_bamfile)
    )
    fm.run_cmd("samtools index %s" % new_bamfile)
    fm.rm_files([tmp_file,tmp_bamfile])
Esempio n. 2
0
def main(args):
    fm.filecheck(args.query)
    fm.filecheck(args.subject)

    ref_gene_seq = list(fm.fasta(args.query).fa_dict.values())[0]

    start_anchor = ref_gene_seq[:args.anchor_size]
    end_anchor = ref_gene_seq[-args.anchor_size:]

    tmp_in = fm.get_random_file()
    tmp_out = fm.get_random_file()
    with open(tmp_in, "w") as O:
        O.write(">tmp\n%s" % start_anchor)
    fm.run_cmd("blastn -task blastn -query %s -subject %s -outfmt 15 > %s" %
               (tmp_in, args.subject, tmp_out),
               verbose=0)
    start_hits = parse_blast(tmp_out, args.anchor_size * 0.9)

    with open(tmp_in, "w") as O:
        O.write(">tmp\n%s" % end_anchor)
    fm.run_cmd("blastn -task blastn -query %s -subject %s -outfmt 15 > %s" %
               (tmp_in, args.subject, tmp_out),
               verbose=0)
    end_hits = parse_blast(tmp_out, args.anchor_size * 0.9)

    fm.rm_files([tmp_in, tmp_out])

    result_type = ""
    if args.strict_one_hit and (len(start_hits) > 1 or len(end_hits) > 1):
        result_type = "NA"
    else:
        if start_hits[0]["subject_seq"] == end_hits[0]["subject_seq"]:
            result_type = "OK"
            start_hit = start_hits[0]
            end_hit = end_hits[0]
        else:
            result_type = "Fragmented"

    with open("%s.result.txt" % args.prefix, "w") as O:
        O.write("%s\t%s\n" % (args.prefix, result_type))

    if result_type != "OK":
        quit()

    print(start_hit, end_hit)
    subject_seqs = fm.fasta(args.subject).fa_dict
    if start_hit["subject_strand"] == "Plus" and end_hit[
            "subject_strand"] == "Plus":
        hit_seq = subject_seqs[
            start_hit["subject_seq"]][start_hit["subject_start"] -
                                      1:end_hit["subject_end"]]
    elif start_hit["subject_strand"] == "Minus" and end_hit[
            "subject_strand"] == "Minus":
        hit_seq = revcom(subject_seqs[start_hit["subject_seq"]]
                         [end_hit["subject_end"] -
                          1:start_hit["subject_start"]])

    # import pdb; pdb.set_trace()
    with open("%s.extracted_seq.fa" % args.prefix, "w") as O:
        O.write(">%s\n%s\n" % (args.prefix, hit_seq))
Esempio n. 3
0
def main_import(args):
    FAILED_SAMPLES = open("%s.failed_samples.log" % args.prefix, "w")
    params = vars(args)
    params["map_file"]= f"{args.prefix}.map"

    with open(params["map_file"],"w") as O:
        # Set up list to hold sample names
        samples = []
        # Loop through sample-file and do (1) append samples to list, (2) write sample to map file and (3) check for VCF index
        for line in open(args.sample_file):
            sample = line.rstrip()
            vcf_file = f"{args.vcf_dir}/{sample}{args.vcf_extension}"
            sys.stderr.write(f"Looking for {vcf_file}")
            if os.path.isfile(vcf_file):
                sys.stderr.write("...OK\n")
            else:
                sys.stderr.write("...Not found...skipping\n")
                continue
            # filecheck(vcf_file)
            if args.ignore_missing and nofile(vcf_file):
                FAILED_SAMPLES.write("%s\tno_file\n" % sample)
                continue
            if nofile(f"{vcf_file}.validated"):
                if nofile(f"{vcf_file}.tbi"):
                    run_cmd(f"tabix {vcf_file}")
                run_cmd(f"gatk ValidateVariants -R {args.ref} -V {vcf_file} -gvcf && touch {vcf_file}.validated")
                if nofile(f"{vcf_file}.validated"):
                    FAILED_SAMPLES.write("%s\tno_validation\n" % sample)
                    continue
            samples.append(sample)
            O.write("%s\t%s\n" % (sample,vcf_file))
            if nofile(f"{vcf_file}.tbi"):
                run_cmd(f"bcftools index --tbi {vcf_file}")
    # Create .dict file (GATK fasta index) has been created for the reference
    if nofile("%s.dict" % args.ref.replace(".fasta","").replace(".fa","")):
        run_cmd("gatk CreateSequenceDictionary -R %(ref)s" % params)
    # Create .fai file (SAMtools fasta index) has been created for the reference
    if nofile("%s.fai" % args.ref.replace(".fasta","").replace(".fa","")):
        run_cmd("samtools faidx %(ref)s" % params)

    window_cmd = "bedtools makewindows -n %(num_genome_chunks)s -g %(ref)s.fai | awk '{print $1\":\"$2+1\"-\"$3\" \"$1\"_\"$2+1\"_\"$3}'" % params
    if nofile("%(prefix)s.dbconf.json" % params):
        import_cmd = "gatk GenomicsDBImport --genomicsdb-workspace-path %(prefix)s_{2}_genomics_db -L {1} --sample-name-map %(map_file)s --reader-threads %(threads)s --batch-size 500" % params
        run_cmd(f"{window_cmd} | parallel --bar -j {args.threads} --col-sep \" \" {import_cmd}", verbose=2)
        json.dump({"num_genome_chunks":args.num_genome_chunks},open("%(prefix)s.dbconf.json" % params,"w"))
    else:
        conf = json.load(open(filecheck(f"{args.prefix}.dbconf.json")))
        for l in cmd_out(window_cmd):
            row = l.strip().split()
            dirname = "%s_%s_genomics_db" % (args.prefix,row[1])
            sys.stderr.write("Looking for direcotry named %s..." % dirname)
            foldercheck(dirname)
            sys.stderr.write("OK\n")
        import_cmd = "gatk GenomicsDBImport --genomicsdb-update-workspace-path %(prefix)s_{2}_genomics_db -L {1} --sample-name-map %(map_file)s --reader-threads %(threads)s --batch-size 500" % params
        run_cmd(f"{window_cmd} | parallel --bar -j {args.threads} --col-sep \" \" {import_cmd}", verbose=2)
def main(args):

    nodes = defaultdict(set)
    sys.stderr.write("Loading taxonomy\n")
    for l in tqdm(open(fm.filecheck(args.tax_dump))):
        row = l.strip().split()
        nodes[row[2]].add(row[0])

    def flatten(d):
        v = [[i] if not isinstance(i, list) else flatten(i) for i in d]
        return [i for b in v for i in b]

    def get_tax(t):
        if len(nodes[t]) == 0:
            return [t]
        return [t] + flatten([get_tax(sub_t) for sub_t in nodes[t]])

    sys.stderr.write("Extracting read names\n")
    args.tmp_file = str(uuid4())
    with open(args.tmp_file, "w") as O:
        if args.exclude:
            tax_tree = set(
                flatten([get_tax(x) for x in args.exclude.split(",")]))
            for l in tqdm(open(fm.filecheck(args.kraken2_output))):
                row = l.strip().split()
                if row[2] not in tax_tree:
                    O.write("%s\n" % row[1])
        else:
            tax_tree = set(
                flatten([get_tax(x) for x in args.extract.split(",")]))
            for l in tqdm(open(fm.filecheck(args.kraken2_output))):
                row = l.strip().split()
                if row[2] in tax_tree:
                    O.write("%s\n" % row[1])

    sys.stderr.write("Writing filtered fastq files\n")
    fm.filecheck(args.R1)
    args.R1_filt = args.R1.replace(".fastq.gz", "").replace(
        ".fq.gz", "").replace(".fastq", "") + ".kraken2_filt.fastq.gz"
    fm.run_cmd("seqtk subseq %(R1)s %(tmp_file)s | gzip -c > %(R1_filt)s" %
               vars(args))

    if args.R2:
        fm.filecheck(args.R2)
        args.R2_filt = args.R2.replace(".fastq.gz", "").replace(
            ".fq.gz", "").replace(".fastq", "") + ".kraken2_filt.fastq.gz"
        fm.run_cmd("seqtk subseq %(R2)s %(tmp_file)s | gzip -c > %(R2_filt)s" %
                   vars(args))

    fm.rm_files([args.tmp_file])
Esempio n. 5
0
def main_genotype(args):
    conf = json.load(open(filecheck(f"{args.prefix}.dbconf.json")))
    params = vars(args)
    params["num_genome_chunks"] = conf["num_genome_chunks"]
    window_cmd = "bedtools makewindows -n %(num_genome_chunks)s -g %(ref)s.fai | awk '{print $1\":\"$2+1\"-\"$3\" \"$1\"_\"$2+1\"_\"$3}'" % params
    params["window_cmd"] = window_cmd
    # Check folders exist
    for l in cmd_out(window_cmd):
        row = l.strip().split()
        dirname = "%s_%s_genomics_db" % (args.prefix,row[1])
        sys.stderr.write("Looking for direcotry named %s..." % dirname)
        foldercheck(dirname)
        sys.stderr.write("OK\n")

    genotype_cmd = "gatk --java-options \"-Xmx40g\" GenotypeGVCFs -R %(ref)s -V gendb://%(prefix)s_{2}_genomics_db -O %(prefix)s.{2}.genotyped.vcf.gz" % params
    run_cmd(f"{window_cmd} | parallel --bar -j {args.threads} --col-sep \" \" {genotype_cmd}",verbose=2)
    run_cmd("bcftools concat -Oz -o %(prefix)s.%(subfix_vcf)s.genotyped.vcf.gz `%(window_cmd)s | awk '{print \"%(prefix)s.\"$2\".genotyped.vcf.gz\"}'`" % params)
    run_cmd("rm `%(window_cmd)s | awk '{print \"%(prefix)s.\"$2\".genotyped.vcf.gz*\"}'`" % params)
def main(args):
    check_programs(["taxonkit", "seqtk"])
    if not os.path.isdir(
            "%s/.taxonkit/" % os.path.expanduser("~")) or not os.path.isfile(
                "%s/.taxonkit/nodes.dmp" % os.path.expanduser("~")):
        download_files()
    nodes = set()
    sys.stderr.write("Loading taxonomy\n")
    cmd = "taxonkit list --ids %s" % (args.extract
                                      if args.extract else args.exclude)
    for l in fm.cmd_out(cmd):
        if l == "": continue
        row = l.strip().split()
        nodes.add(row[0])

    sys.stderr.write("Extracting read names\n")
    args.tmp_file = str(uuid4())
    total_reads = 0
    kept_reads = 0

    with open(args.tmp_file, "w") as O:
        if args.exclude:
            for l in tqdm(open(fm.filecheck(args.kraken2_output))):
                total_reads += 1
                row = l.strip().split()
                if row[2] not in nodes:
                    O.write("%s\n" % row[1])
                    kept_reads += 1
        else:
            for l in tqdm(open(fm.filecheck(args.kraken2_output))):
                total_reads += 1
                row = l.strip().split()
                if row[2] in nodes:
                    O.write("%s\n" % row[1])
                    kept_reads += 1

    sys.stderr.write("Writing filtered fastq files\n")
    fm.filecheck(args.R1)
    args.R1_filt = args.R1.replace(".fastq.gz", "").replace(
        ".fq.gz", "").replace(".fastq", "") + ".kraken2_filt.fastq.gz"
    fm.run_cmd("seqtk subseq %(R1)s %(tmp_file)s | gzip -c > %(R1_filt)s" %
               vars(args))

    if args.R2:
        fm.filecheck(args.R2)
        args.R2_filt = args.R2.replace(".fastq.gz", "").replace(
            ".fq.gz", "").replace(".fastq", "") + ".kraken2_filt.fastq.gz"
        fm.run_cmd("seqtk subseq %(R2)s %(tmp_file)s | gzip -c > %(R2_filt)s" %
                   vars(args))

    fm.rm_files([args.tmp_file])
    sys.stderr.write("\nKept %s/%s reads\n" % (kept_reads, total_reads))
Esempio n. 7
0
def main(args):
    samples = []
    for l in open(args.samples):
        samples = [x.rstrip() for x in open(args.samples).readlines()]

    for s in samples:
        fm.filecheck("per_sample/%s%s" % (s, args.alignment_extension))

    if fm.nofolder("%(dir)s/kraken" % vars(args)):
        fm.run_cmd("%(dir)s/kraken" % vars(args))

    args.cmd_file = fm.get_random_file()
    with open(args.cmd_file, "w") as O:
        for s in samples:
            args.sample = s

            if fm.nofile("%(dir)s/per_sample/%(sample)s.median_dp.txt" %
                         vars(args)):
                O.write(
                    "printf %s\"\\t\"$(bedtools genomecov -d -ibam %s/per_sample/%s%s | datamash median 3)\"\\n\" > %s/per_sample/%s.median_dp.txt\n"
                    % (s, args.dir, s, args.alignment_extension, args.dir, s))

            if fm.nofile("%(dir)s/kraken/%(sample)s.done" % vars(args)):
                O.write(
                    "kraken2 --db /run/user/506/standard --gzip-compressed --paired %(dir)s/fastq/%(sample)s_1.fastq.gz %(dir)s/fastq/%(sample)s_2.fastq.gz --report %(dir)s/kraken/%(sample)s.report.txt --out %(dir)s/kraken/%(sample)s.out.txt --threads 10 --memory-mapping && touch %(dir)s/kraken/%(sample)s.done\n"
                    % vars(args))

    fm.run_cmd("cat %(cmd_file)s | parallel -j %(io_heavy_threads)s" %
               vars(args),
               verbose=2)
    fm.rm_files([args.cmd_file])

    sample_metrics = []
    for s in samples:
        res = {"sample": s}
        args.sample = s
        for i, l in enumerate(
                open("%(dir)s/per_sample/%(sample)s.bqsr.bamstats" %
                     vars(args))):
            row = l.rstrip().split()
            if i in [2, 3]:
                res[row[3]] = int(row[0])
            elif i == 4:
                res[row[3]] = int(row[0])
                res["mapped_percent"] = float(row[4].replace("(", "").replace(
                    "%", ""))
            else:
                pass

        kraken_results = {}
        for l in open("%(dir)s/kraken/%(sample)s.report.txt" % vars(args)):
            row = l.strip().split()
            if row[3] not in kraken_results:
                kraken_results[row[3]] = (float(row[0]), " ".join(row[5:]))
            if float(row[0]) > kraken_results[row[3]][0]:
                kraken_results[row[3]] = (float(row[0]), " ".join(row[5:]))
        res["kraken_genus"] = "%s (%.2f)" % (kraken_results["G"][1],
                                             kraken_results["G"][0])
        res["kraken_genus1"] = "%s (%.2f)" % (kraken_results["G1"][1],
                                              kraken_results["G1"][0])
        res["kraken_species"] = "%s (%.2f)" % (kraken_results["S"][1],
                                               kraken_results["S"][0])

        tbprofiler_result = json.load(
            open("%(dir)s/tbprofiler/results/%(sample)s.results.json" %
                 vars(args)))
        res["lineage"] = tbprofiler_result["main_lin"]
        res["sub-lineage"] = tbprofiler_result["sublin"]
        res["drtype"] = tbprofiler_result["drtype"]
        tmp_drugs = defaultdict(list)
        for var in tbprofiler_result["dr_variants"]:
            for d in var["drugs"]:
                tmp_drugs[d["drug"]].append(
                    "%s_%s (%.2f)" % (var["gene"], var["change"], var["freq"]))
        for d in drugs:
            res[d] = ", ".join(tmp_drugs[d])

        sample_metrics.append(res)

    with open(args.out + ".sample_info.csv", "w") as O:
        writer = csv.DictWriter(O, fieldnames=list(sample_metrics[0]))
        writer.writeheader()
        writer.writerows(sample_metrics)

    vcf = fm.vcf_class(args.vcf)
    if fm.nofile(args.vcf + ".stats.txt"):
        fm.run_cmd(
            "bcftools norm -m - -f %(ref)s %(vcf)s | bcftools stats -v -s - > %(vcf)s.stats.txt"
            % (vars(args)))

    vcf_stats = vcf.load_stats()

    results = {
        "number of samples": vcf_stats["number of samples"],
        "number of records": vcf_stats["number of records"],
        "number of SNPs": vcf_stats["number of SNPs"],
        "number of indels": vcf_stats["number of indels"],
    }

    snp_results = []
    if fm.nofile(args.vcf + ".csq_info.txt"):
        fm.run_cmd(
            "bcftools view -V indels %(vcf)s | bcftools norm -m - -f %(ref)s | bcftools csq -f %(ref)s -g %(gff)s | correct_tb_csq.py | bcftools +fill-tags | bcftools query -f '%%POS\\t%%REF\\t%%ALT\\t%%AF\\t%%AC\\t%%BCSQ\\n' > %(vcf)s.csq_info.txt"
            % vars(args))
        fm.run_cmd(
            "bcftools view -v indels %(vcf)s | bcftools norm -m - -f %(ref)s | bcftools csq -f %(ref)s -g %(gff)s | correct_tb_csq.py | bcftools +fill-tags | bcftools query -f '%%POS\\t%%REF\\t%%ALT\\t%%AF\\t%%AC\\t%%BCSQ\\n' >> %(vcf)s.csq_info.txt"
            % vars(args))

    variant_info = vcf.get_variant_data(args.ref, args.gff)
    with open(args.out + ".variant_info.csv", "w") as O:
        writer = csv.DictWriter(O, fieldnames=list(variant_info[0]))
        writer.writeheader()
        writer.writerows(variant_info)