def test_eqlayer_polereduce(): "EQLTotalField can reduce data to the pole" # Use remanent magnetization sinc, sdec = -70, 30 model = [Prism(-100, 100, -500, 500, 0, 100, {'magnetization': utils.ang2vec(5, sinc, sdec)})] inc, dec = -60, -15 shape = (50, 50) area = [-2000, 2000, -2000, 2000] x, y, z = gridder.regular(area, shape, z=-100) data = prism.tf(x, y, z, model, inc, dec) true = prism.tf(x, y, z, model, -90, 0, pmag=utils.ang2vec(5, -90, 0)) layer = PointGrid(area, 200, shape) eql = (EQLTotalField(x, y, z, data, inc, dec, layer, sinc, sdec) + 1e-24*Damping(layer.size)) eql.fit() assert_allclose(eql[0].predicted(), data, rtol=0.01) layer.addprop('magnetization', utils.ang2vec(eql.estimate_, inc=-90, dec=0)) calc = sphere.tf(x, y, z, layer, inc=-90, dec=0) assert_allclose(calc, true, atol=10, rtol=0.05)
def test_eqlgrav_prism_interp(): "EQLGravity can interpolate data from a prism" model = [Prism(-300, 300, -500, 500, 100, 600, {'density': 400})] shape = (30, 30) n = shape[0]*shape[1] area = [-2000, 2000, -2000, 2000] x, y, z = gridder.scatter(area, n, z=-100, seed=42) data = prism.gz(x, y, z, model) layer = PointGrid(area, 200, shape) eql = EQLGravity(x, y, z, data, layer) + 1e-23*Damping(layer.size) eql.fit() layer.addprop('density', eql.estimate_) assert_allclose(eql[0].predicted(), data, rtol=0.01) xp, yp, zp = gridder.regular(area, shape, z=-100) true = prism.gz(xp, yp, zp, model) calc = sphere.gz(xp, yp, zp, layer) assert_allclose(calc, true, rtol=0.05)
# First thing to do is make some synthetic data to test the method. We'll use a # single prism to keep it simple props = {'density': 500} model = [mesher.Prism(-5000, 5000, -200, 200, 100, 4000, props)] # The synthetic data will be generated on a random scatter of points area = [-8000, 8000, -5000, 5000] x, y, z = gridder.scatter(area, 300, z=0, seed=42) # Generate some noisy data from our model gz = utils.contaminate(prism.gz(x, y, z, model), 0.2, seed=0) # Now for the equivalent layer. We must setup a layer of point masses where # we'll estimate a density distribution that fits our synthetic data layer = mesher.PointGrid(area, 500, (20, 20)) # Estimate the density using enough damping so that won't try to fit the error eql = EQLGravity(x, y, z, gz, layer) + 1e-22 * Damping(layer.size) eql.fit() # Now we add the estimated densities to our layer layer.addprop('density', eql.estimate_) # and print some statistics of how well the estimated layer fits the data residuals = eql[0].residuals() print("Residuals:") print(" mean:", residuals.mean(), 'mGal') print(" stddev:", residuals.std(), 'mGal') # Now I can forward model gravity data anywhere we want. For interpolation, we # calculate it on a grid. For upward continuation, at a greater height. We can # even combine both into a single operation. x2, y2, z2 = gridder.regular(area, (50, 50), z=-1000) gz_up = sphere.gz(x2, y2, z2, layer)
model = [mesher.Prism(-2000, 2000, -200, 200, 100, 4000, props)] # The synthetic data will be generated on a regular grid area = [-8000, 8000, -5000, 5000] shape = (40, 40) x, y, z = gridder.regular(area, shape, z=-150) # Generate some noisy data from our model data = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 5, seed=0) # Now for the equivalent layer. We must setup a layer of dipoles where we'll # estimate a magnetization intensity distribution that fits our synthetic data. # Notice that we only estimate the intensity. We must provide the magnetization # direction of the layer through the sinc and sdec parameters. layer = mesher.PointGrid(area, 700, shape) eql = (EQLTotalField(x, y, z, data, inc, dec, layer, sinc=inc, sdec=dec) + 1e-15*Damping(layer.size)) eql.fit() # Print some statistics of how well the estimated layer fits the data residuals = eql[0].residuals() print("Residuals:") print(" mean:", residuals.mean(), 'nT') print(" stddev:", residuals.std(), 'nT') # Now I can forward model data anywhere we want. To reduce to the pole, we must # provide inc = 90 (or -90) for the Earth's field as well as to the layer's # magnetization. layer.addprop('magnetization', utils.ang2vec(eql.estimate_, inc=-90, dec=0)) atpole = sphere.tf(x, y, z, layer, inc=-90, dec=0) fig, axes = plt.subplots(1, 2, figsize=(8, 6))
# Use 2% random noise to corrupt the data tts = utils.contaminate(tts, 0.02, percent=True, seed=seed) # Make a mesh for the inversion. The inversion will estimate the velocity in # each square of the mesh. To make things simpler, we'll use a mesh that is the # same as our original model. mesh = SquareMesh(area, shape) # Create solvers for each type of regularization and fit the synthetic data to # obtain an estimated velocity model solver = srtomo.SRTomo(tts, srcs, recs, mesh) smooth = solver + 1e8 * Smoothness2D(mesh.shape) smooth.fit() damped = solver + 1e8 * Damping(mesh.size) damped.fit() sharp = solver + 30 * TotalVariation2D(1e-10, mesh.shape) # Since Total Variation is a non-linear regularizing function, then the # tomography becomes non-linear as well. We need to configure the inversion to # use the Levemberg-Marquardt algorithm, a gradient descent method, that # requires an initial estimate sharp.config('levmarq', initial=0.00001 * np.ones(mesh.size)).fit() # Plot the original model and the 3 estimates using the same color bar fig, axes = plt.subplots(2, 2, figsize=(8, 7), sharex='all', sharey='all') x = model.get_xs() / 1000 y = model.get_ys() / 1000 vmin, vmax = vel.min(), vel.max()
from fatiando import gridder, utils, mesher from fatiando.vis import mpl # Make synthetic data inc, dec = -60, 23 props = {'magnetization': 10} model = [mesher.Prism(-500, 500, -1000, 1000, 500, 4000, props)] shape = (25, 25) x, y, z = gridder.regular([-5000, 5000, -5000, 5000], shape, z=0) tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 5, seed=0) # Setup the layer layer = mesher.PointGrid([-7000, 7000, -7000, 7000], 700, (50, 50)) # Estimate the magnetization intensity # Need to apply regularization so that won't try to fit the error as well misfit = EQLTotalField(x, y, z, tf, inc, dec, layer) regul = Damping(layer.size) solver = (misfit + 1e-18 * regul).fit() residuals = solver[0].residuals() layer.addprop('magnetization', solver.estimate_) print("Residuals:") print("mean:", residuals.mean()) print("stddev:", residuals.std()) # Now I can forward model the layer at the south pole and check against the # true solution of the prism tfpole = prism.tf(x, y, z, model, -90, 0) tfreduced = sphere.tf(x, y, z, layer, -90, 0) mpl.figure(figsize=(14, 4)) mpl.subplot(1, 3, 1) mpl.axis('scaled')
vel[5:25, 5:25] = 10000 model.addprop('vp', vel.ravel()) # Make some travel time data and add noise seed = 0 # Set the random seed so that points are the same every time src_loc = utils.random_points(area, 80, seed=seed) rec_loc = utils.circular_points(area, 30, random=True, seed=seed) srcs, recs = utils.connect_points(src_loc, rec_loc) tts = ttime2d.straight(model, 'vp', srcs, recs) tts, error = utils.contaminate(tts, 0.01, percent=True, return_stddev=True, seed=seed) # Make the mesh mesh = SquareMesh(area, shape) # and run the inversion tomo = (srtomo.SRTomo(tts, srcs, recs, mesh) + 1e8*Damping(mesh.size)) tomo.fit() mesh.addprop('vp', tomo.estimate_) # Calculate and print the standard deviation of the residuals # Should be close to the data error if the inversion was able to fit the data residuals = tomo[0].residuals() print "Assumed error: %g" % (error) print "Standard deviation of residuals: %g" % (np.std(residuals)) mpl.figure(figsize=(14, 5)) mpl.subplot(1, 2, 1) mpl.axis('scaled') mpl.title('Vp model') mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic) cb = mpl.colorbar()
30, random=True, seed=seed) rec_loc = np.transpose([rec_loc_x, rec_loc_y]) srcs = [src for src in src_loc for _ in rec_loc] recs = [rec for _ in src_loc for rec in rec_loc] tts = ttime2d.straight(model, 'vp', srcs, recs) tts, error = utils.contaminate(tts, 0.01, percent=True, return_stddev=True, seed=seed) # Make the mesh mesh = SquareMesh(area, shape) # and run the inversion tomo = (srtomo.SRTomo(tts, srcs, recs, mesh) + 1e8 * Damping(mesh.size)) tomo.fit() mesh.addprop('vp', tomo.estimate_) # Calculate and print the standard deviation of the residuals # Should be close to the data error if the inversion was able to fit the data residuals = tomo[0].residuals() print "Assumed error: %g" % (error) print "Standard deviation of residuals: %g" % (np.std(residuals)) mpl.figure(figsize=(14, 5)) mpl.subplot(1, 2, 1) mpl.axis('scaled') mpl.title('Vp model') mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic) cb = mpl.colorbar()