def run_protection(self, image_paths, mode='mid', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png', separate_target=True): if mode == 'custom': pass else: th, max_step, lr = self.mode2param(mode) start_time = time.time() if not image_paths: raise Exception("No images in the directory") with graph.as_default(): faces = Faces(image_paths, self.aligner, verbose=1) original_images = faces.cropped_faces original_images = np.array(original_images) if separate_target: target_embedding = [] for org_img in original_images: org_img = org_img.reshape([1] + list(org_img.shape)) tar_emb = select_target_label(org_img, self.feature_extractors_ls, self.fs_names) target_embedding.append(tar_emb) target_embedding = np.concatenate(target_embedding) else: target_embedding = select_target_label(original_images, self.feature_extractors_ls, self.fs_names) protected_images = generate_cloak_images(self.sess, self.feature_extractors_ls, original_images, target_emb=target_embedding, th=th, faces=faces, sd=sd, lr=lr, max_step=max_step, batch_size=batch_size) faces.cloaked_cropped_faces = protected_images cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(original_images) final_images = faces.merge_faces(cloak_perturbation) for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths): file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), mode, format) dump_image(p_img, file_name, format=format) elapsed_time = time.time() - start_time print('attack cost %f s' % elapsed_time) print("Done!")
def run_protection(self, image_paths, mode='min', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png', separate_target=True, debug=True, no_align=False): if mode == 'custom': pass else: th, max_step, lr = self.mode2param(mode) current_param = "-".join([ str(x) for x in [ mode, th, sd, lr, max_step, batch_size, format, separate_target, debug ] ]) print("Fininshed Setting Parameters at: {}".format(datetime.now())) image_paths, loaded_images = filter_image_paths(image_paths) print("Finished Loading Images at: {}".format(datetime.now())) if not image_paths: print("No images in the directory") return 3 with graph.as_default(): faces = Faces(image_paths, loaded_images, self.aligner, verbose=1, no_align=no_align) original_images = faces.cropped_faces print("Finished Detecting Faces In The Images at: {}".format( datetime.now())) if len(original_images) == 0: print("No face detected. ") return 2 original_images = np.array(original_images) with sess.as_default(): if separate_target: target_embedding = [] i = 0 print("Start image reshape at: {}".format(datetime.now())) for org_img in original_images: org_img = org_img.reshape([1] + list(org_img.shape)) print("Finished Image {} Reshape at: {}".format( i, datetime.now())) tar_emb = select_target_label( org_img, self.feature_extractors_ls, self.fs_names) print( "Finished Target Embedding Image {} at: {}".format( i, datetime.now())) target_embedding.append(tar_emb) i += 1 target_embedding = np.concatenate(target_embedding) else: target_embedding = select_target_label( original_images, self.feature_extractors_ls, self.fs_names) print("Finished All Images Target Embedding at: {}".format( datetime.now())) if current_param != self.protector_param: self.protector_param = current_param if self.protector is not None: del self.protector self.protector = FawkesMaskGeneration( sess, self.feature_extractors_ls, batch_size=batch_size, mimic_img=True, intensity_range='imagenet', initial_const=sd, learning_rate=lr, max_iterations=max_step, l_threshold=th, verbose=1 if debug else 0, maximize=False, keep_final=False, image_shape=(224, 224, 3)) print("Finished Initializing Fawkes Protector at: {}".format( datetime.now())) protected_images = generate_cloak_images( self.protector, original_images, target_emb=target_embedding) print("Finished Protecting Images at: {}".format( datetime.now())) faces.cloaked_cropped_faces = protected_images final_images = faces.merge_faces( reverse_process_cloaked(protected_images), reverse_process_cloaked(original_images)) print("Finished Merging Faces at: {}".format(datetime.now())) for p_img, path in zip(final_images, image_paths): file_name = "{}_{}_cloaked.{}".format( ".".join(path.split(".")[:-1]), mode, format) dump_image(p_img, file_name, format=format) print("Done! and Finished Exporting File at: {}".format( datetime.now())) return 1
def run_protection(self, image_paths, mode='low', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png', separate_target=True, debug=False): if mode == 'custom': pass else: th, max_step, lr = self.mode2param(mode) current_param = "-".join([ str(x) for x in [ mode, th, sd, lr, max_step, batch_size, format, separate_target, debug ] ]) image_paths, loaded_images = filter_image_paths(image_paths) if not image_paths: raise Exception("No images in the directory") with graph.as_default(): faces = Faces(image_paths, loaded_images, self.aligner, verbose=1) original_images = faces.cropped_faces original_images = np.array(original_images) with sess.as_default(): if separate_target: target_embedding = [] for org_img in original_images: org_img = org_img.reshape([1] + list(org_img.shape)) tar_emb = select_target_label( org_img, self.feature_extractors_ls, self.fs_names) target_embedding.append(tar_emb) target_embedding = np.concatenate(target_embedding) else: target_embedding = select_target_label( original_images, self.feature_extractors_ls, self.fs_names) if current_param != self.protector_param: self.protector_param = current_param if self.protector is not None: del self.protector self.protector = FawkesMaskGeneration( sess, self.feature_extractors_ls, batch_size=batch_size, mimic_img=True, intensity_range='imagenet', initial_const=sd, learning_rate=lr, max_iterations=max_step, l_threshold=th, verbose=1 if debug else 0, maximize=False, keep_final=False, image_shape=(224, 224, 3)) protected_images = generate_cloak_images( self.protector, original_images, target_emb=target_embedding) faces.cloaked_cropped_faces = protected_images cloak_perturbation = reverse_process_cloaked( protected_images) - reverse_process_cloaked( original_images) final_images = faces.merge_faces(cloak_perturbation) for p_img, path in zip(final_images, image_paths): file_name = "{}_{}_cloaked.{}".format( ".".join(path.split(".")[:-1]), mode, format) dump_image(p_img, file_name, format=format) print("Done!") return None
def run_protection(self, unprotected, protected, image, mode='min', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png', separate_target=True, debug=False, no_align=False, lang="spanish"): th, max_step, lr = self.mode2param(mode) current_param = "-".join([ str(x) for x in [ mode, th, sd, lr, max_step, batch_size, format, separate_target, debug ] ]) img = load_image(unprotected + "/" + image) with graph.as_default(): faces = Faces([unprotected + "/" + image], [img], self.aligner, verbose=1, no_align=no_align) original_images = faces.cropped_faces if len(original_images) == 0: response = { 'module': 'makeup', 'status': 'No face detected', 'd1': 'No face detected', 'd2': 'Unhandled error', 'd3': 'No face detected' } return response original_images = np.array(original_images) with sess.as_default(): target_embedding = select_target_label( original_images, self.feature_extractors_ls, self.fs_names) if current_param != self.protector_param: self.protector_param = current_param if self.protector is not None: del self.protector self.protector = FawkesMaskGeneration( sess, self.feature_extractors_ls, batch_size=batch_size, mimic_img=True, intensity_range='imagenet', initial_const=sd, learning_rate=lr, max_iterations=max_step, l_threshold=th, verbose=1 if debug else 0, maximize=False, keep_final=False, image_shape=(224, 224, 3)) protected_images = generate_cloak_images( self.protector, original_images, target_emb=target_embedding) faces.cloaked_cropped_faces = protected_images final_images = faces.merge_faces( reverse_process_cloaked(protected_images), reverse_process_cloaked(original_images)) backend_img = protected + "/" + image dump_image(final_images[0], backend_img, format=format) if (lang == "english"): response = { 'module': 'makeup', 'status': 'MakeUp Ok', 'mode': mode, 'd1': 'Face attacked', 'd2': 'Mode: {}'.format(mode), 'd3': 'The face of this avatar has been attacked ' + 'and although it looks identical to the original ' + 'photo the reality is that you will see that ' + 'the face has alterations that make it different ' + 'from the original photo.', 'backend_img': backend_img } else: response = { 'module': 'makeup', 'status': 'MakeUp Ok', 'mode': mode, 'd1': 'Rostro atacado', 'd2': 'Modo: {}'.format(mode), 'd3': 'El rostro de este avatar ha sido atacado y ' + 'aunque parezca idéntico a la foto original la ' + 'realidad es que verá que el rostro tiene altera' + 'ciones que la hacen diferente a la foto original.', 'backend_img': backend_img } response["url_img"] = backend_img[backend_img.find("/static"):] return response