Esempio n. 1
0
    def prepare_data(self,idxs=None):
        if self.dataset is 'kth':
            print 'loading from KTH dataset'
            x_train0, x_test0, y_train0, y_test0 = \
                get_kth_imgs(N=50000,n=self.n,reCalc=False,resize=self.original_dim)
            x_train0[0],_ = synth2(224,H=0.3)
            x_train0[1],_ = synth2(224,H=0.5)
            for i in range(2):
                x_train0[i]-=np.min(x_train0[i]*1.0)
                x_train0[i]=x_train0[i]/np.max(x_train0[i])*256.0
            print 'two first samples are fBm'

        elif self.dataset is 'other': # fbm
            print 'loading from OTHER (fbm) dataset'
            x_train0, x_test0, y_train0, y_test0 = \
                get_other_imgs(N=1000,n=self.n,reCalc=False,resize=self.original_dim)
            #print 'NOT IMPLEMENTED'
        elif self.dataset is 'kurtsim':
            print 'loading from kurt (sim) dataset'
            x_train0, x_test0, y_train0, y_test0 = \
                get_kurtsim_imgs(N=120,n=self.n,reCalc=False,resize=self.original_dim)
        else:
            print 'NOT IMPLEMENTED'

        if self.dataset is 'kth' and idxs is not None:
            return x_train0[idxs], x_test0, y_train0[idxs], y_test0
        else:
            return x_train0, x_test0, y_train0, y_test0
Esempio n. 2
0
def get_G_kth():
    texture = Texture()
    original_dim = 224**2
    n=200
    x_train0, x_test0, y_train0, y_test0 = \
        get_kth_imgs(N=50000,n=n,reCalc=False,resize=original_dim)
    saved_G = '/home/ido/disk/KTH_G.bin'
    saved_F = '/home/ido/disk/KTH_F.bin'
    gg = []
    ff = []
    x_train0 = x_train0
    x_train0[0],_ = synth2(224,H=0.3)
    x_train0[1],_ = synth2(224,H=0.5)
    for i in range(2):
        x_train0[i]-=np.min(x_train0[i]*1.0)
        x_train0[i]=x_train0[i]/np.max(x_train0[i])*256.0
    print 'two first samples are fBm'
    #plt.imshow(x_train0[0])

    for i,im in enumerate(x_train0):
        print i, '/', len(x_train0)
        im = np.stack([im,im,im],axis=2).astype(np.float32) # grayscale
        G0, F0 = texture.synTexture(im,onlyGram = True)
        gg.append(G0)
        ff.append(F0)
    pickle.dump(gg,open(saved_G,'w'))
    pickle.dump(ff,open(saved_F,'w'))
Esempio n. 3
0
 def prepare_data(self,idxs=None):
     x_train0, x_test0, y_train0, y_test0 = \
         get_kth_imgs(N=50000,n=self.n,reCalc=False,resize=self.original_dim)
     x_train0[0],_ = synth2(224,H=0.3)
     x_train0[1],_ = synth2(224,H=0.5)
     for i in range(2):
         x_train0[i]-=np.min(x_train0[i]*1.0)
         x_train0[i]=x_train0[i]/np.max(x_train0[i])*256.0
     print 'two first samples are fBm'
     if idxs is not None:
         return x_train0[idxs], x_test0, y_train0[idxs], y_test0
     else:
         return x_train0, x_test0, y_train0, y_test0
# train the VAE on MNIST digits
original_dim = 32 * 32  # 784
original_dim2 = int(np.sqrt(original_dim))
(x_train0, y_train0), (x_test0, y_test0) = mnist.load_data()
n = 32
use_fbms = False
batch_size = 100
if use_fbms:
    print('USING fBms')
    x_train0, x_test0, y_train0, y_test0 = \
        generate_2d_fbms(N=50000,n=n,reCalc=False,resize=original_dim)
else:
    print('using real imgs')
    x_train0, x_test0, y_train0, y_test0 = \
        get_kth_imgs(N=50000,n=n,reCalc=False,resize=original_dim)
    localphase = LocalPhase(x_train0,
                            x_test0,
                            y_train0,
                            y_test0,
                            recalc_stats=True)
    y_test0 = localphase.agg_y_test
    y_train0 = localphase.agg_y_train
    maxlen = (len(x_train0) / batch_size) * batch_size
    x_train0 = x_train0[:maxlen]
    y_train0 = y_train0[:maxlen]
    maxlen = (len(x_test0) / batch_size) * batch_size
    x_test0 = x_test0[:maxlen]
    y_test0 = y_test0[:maxlen]
############################################################