Esempio n. 1
0
    def __init__(self,
                 root: str,
                 normal_class: int,
                 preproc: str,
                 nominal_label: int,
                 supervise_mode: str,
                 noise_mode: str,
                 oe_limit: int,
                 online_supervision: bool,
                 logger: Logger = None):
        """
        AD dataset for Cifar-10.
        :param root: root directory where data is found or is to be downloaded to
        :param normal_class: the class considered nominal
        :param preproc: the kind of preprocessing pipeline
        :param nominal_label: the label that marks nominal samples in training. The scores in the heatmaps always
            rate label 1, thus usually the nominal label is 0, s.t. the scores are anomaly scores.
        :param supervise_mode: the type of generated artificial anomalies.
            See :meth:`fcdd.datasets.bases.TorchvisionDataset._generate_artificial_anomalies_train_set`.
        :param noise_mode: the type of noise used, see :mod:`fcdd.datasets.noise_mode`.
        :param oe_limit: limits the number of different anomalies in case of Outlier Exposure (defined in noise_mode)
        :param online_supervision: whether to sample anomalies online in each epoch,
            or offline before training (same for all epochs in this case).
        :param logger: logger
        """
        super().__init__(root, logger=logger)

        self.n_classes = 2  # 0: normal, 1: outlier
        self.shape = (3, 32, 32)
        self.raw_shape = (3, 32, 32)
        self.normal_classes = tuple([normal_class])
        self.outlier_classes = list(range(0, 10))
        self.outlier_classes.remove(normal_class)
        assert nominal_label in [0, 1]
        self.nominal_label = nominal_label
        self.anomalous_label = 1 if self.nominal_label == 0 else 0

        if self.nominal_label != 0:
            print('Swapping labels, i.e. anomalies are 0 and nominals are 1.')

        # Pre-computed min and max values (after applying LCN) from train data per class
        min_max_l1 = [(-28.94083453598571, 13.802961825439636),
                      (-6.681770233365245, 9.158067708230273),
                      (-34.924463588638204, 14.419298165027628),
                      (-10.599172931391799, 11.093187820377565),
                      (-11.945022995801637, 10.628045447867583),
                      (-9.691969487694928, 8.948326776180823),
                      (-9.174940012342555, 13.847014686472365),
                      (-6.876682005899029, 12.282371383343161),
                      (-15.603507135507172, 15.2464923804279),
                      (-6.132882973622672, 8.046098172351265)]

        # mean and std of original images per class
        mean = [
            [0.5256516933441162, 0.5603281855583191, 0.5888723731040955],
            [0.4711322784423828, 0.45446228981018066, 0.4471212327480316],
            [0.48923906683921814, 0.49146366119384766, 0.423904687166214],
            [0.4954785108566284, 0.45636114478111267, 0.4154069721698761],
            [0.47155335545539856, 0.46515223383903503, 0.37797248363494873],
            [0.49992093443870544, 0.4646056592464447, 0.4164286255836487],
            [0.47001829743385315, 0.43829214572906494, 0.34500396251678467],
            [0.5019531846046448, 0.47983652353286743, 0.4167139232158661],
            [0.4902143180370331, 0.5253947973251343, 0.5546804070472717],
            [0.4986417591571808, 0.4852965474128723, 0.4780091941356659]
        ]
        std = [[0.2502202093601227, 0.24083486199378967, 0.2659735083580017],
               [0.26806357502937317, 0.2658274173736572, 0.2749459445476532],
               [0.22705480456352234, 0.2209445983171463, 0.24337927997112274],
               [0.2568431496620178, 0.25227081775665283, 0.25799375772476196],
               [0.21732737123966217, 0.20652702450752258, 0.21182335913181305],
               [0.2504253387451172, 0.24374878406524658, 0.2489463835954666],
               [0.22888341546058655, 0.21856172382831573, 0.2204199582338333],
               [0.2430490106344223, 0.243973046541214, 0.25171563029289246],
               [0.24962472915649414, 0.24068884551525116, 0.25149762630462646],
               [0.2680525481700897, 0.26910799741744995, 0.2810165584087372]]

        # different types of preprocessing pipelines, 'lcn' is for using LCN, 'aug{X}' for augmentations
        # also contains options for the black center experiments
        all_transform = []
        if preproc == 'lcn':
            test_transform = transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Lambda(
                    lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize([min_max_l1[normal_class][0]] * 3, [
                    min_max_l1[normal_class][1] - min_max_l1[normal_class][0]
                ] * 3)
            ])
        elif preproc in ['', None, 'default', 'none']:
            test_transform = transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1']:
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
            transform = transforms.Compose([
                transforms.ColorJitter(brightness=0.01,
                                       contrast=0.01,
                                       saturation=0.01,
                                       hue=0.01),
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.001 * torch.randn_like(x)),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1_blackcenter']:
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
            transform = transforms.Compose([
                transforms.ColorJitter(brightness=0.01,
                                       contrast=0.01,
                                       saturation=0.01,
                                       hue=0.01),
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.001 * torch.randn_like(x)),
                BlackCenter(0.6),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1_blackcenter_inverted']:
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
            transform = transforms.Compose([
                transforms.ColorJitter(brightness=0.01,
                                       contrast=0.01,
                                       saturation=0.01,
                                       hue=0.01),
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.001 * torch.randn_like(x)),
                BlackCenter(0.6, inverse=True),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        else:
            raise ValueError(
                'Preprocessing pipeline {} is not known.'.format(preproc))

        target_transform = transforms.Lambda(
            lambda x: self.anomalous_label
            if x in self.outlier_classes else self.nominal_label)
        if online_supervision:
            all_transform = MultiCompose([
                OnlineSuperviser(self, supervise_mode, noise_mode, oe_limit),
                *all_transform
            ])
        else:
            all_transform = MultiCompose(all_transform)

        train_set = MYCIFAR10(root=self.root,
                              train=True,
                              download=True,
                              normal_classes=self.normal_classes,
                              transform=transform,
                              target_transform=target_transform,
                              all_transform=all_transform)
        train_set.targets = torch.from_numpy(np.asarray(train_set.targets))
        train_set.data = torch.from_numpy(train_set.data).transpose(
            1, 3).transpose(2, 3)

        self._generate_artificial_anomalies_train_set(
            supervise_mode if not online_supervision else 'unsupervised',
            noise_mode, oe_limit, train_set, normal_class)

        self._test_set = MYCIFAR10(root=self.root,
                                   train=False,
                                   download=True,
                                   normal_classes=self.normal_classes,
                                   transform=test_transform,
                                   target_transform=target_transform)
Esempio n. 2
0
    def __init__(self, root: str, normal_class: int, preproc: str, nominal_label: int,
                 supervise_mode: str, noise_mode: str, oe_limit: int, online_supervision: bool, logger: Logger = None):
        """
        AD dataset for Fashion-MNIST.
        :param root: root directory where data is found or is to be downloaded to
        :param normal_class: the class considered nominal
        :param preproc: the kind of preprocessing pipeline
        :param nominal_label: the label that marks nominal samples in training. The scores in the heatmaps always
            rate label 1, thus usually the nominal label is 0, s.t. the scores are anomaly scores.
        :param supervise_mode: the type of generated artificial anomalies.
            See :meth:`fcdd.datasets.bases.TorchvisionDataset._generate_artificial_anomalies_train_set`.
        :param noise_mode: the type of noise used, see :mod:`fcdd.datasets.noise_mode`.
        :param oe_limit: limits the number of different anomalies in case of Outlier Exposure (defined in noise_mode)
        :param online_supervision: whether to sample anomalies online in each epoch,
            or offline before training (same for all epochs in this case)
        :param logger: logger
        """
        super().__init__(root, logger=logger)

        self.n_classes = 2  # 0: normal, 1: outlier
        self.shape = (1, 28, 28)
        self.raw_shape = (28, 28)
        self.normal_classes = tuple([normal_class])
        self.outlier_classes = list(range(0, 10))
        self.outlier_classes.remove(normal_class)
        assert nominal_label in [0, 1]
        self.nominal_label = nominal_label
        self.anomalous_label = 1 if self.nominal_label == 0 else 0

        # Pre-computed min and max values (after applying LCN) from train data per class
        min_max_l1 = [
            (-2.681239128112793, 24.85430908203125),
            (-2.5778584480285645, 11.169795989990234),
            (-2.808171510696411, 19.133548736572266),
            (-1.9533653259277344, 18.65673065185547),
            (-2.6103856563568115, 19.166685104370117),
            (-1.2358522415161133, 28.463092803955078),
            (-3.251605987548828, 24.196823120117188),
            (-1.0814440250396729, 16.878812789916992),
            (-3.6560964584350586, 11.3502836227417),
            (-1.3859291076660156, 11.426650047302246)
        ]

        # mean and std of original images per class
        mean = [
            [0.3256056010723114],
            [0.22290456295013428],
            [0.376699835062027],
            [0.25889596343040466],
            [0.3853232264518738],
            [0.1367349475622177],
            [0.3317836821079254],
            [0.16769391298294067],
            [0.35355499386787415],
            [0.30119451880455017]
        ]
        std = [
            [0.35073918104171753],
            [0.34353047609329224],
            [0.3586803078651428],
            [0.3542196452617645],
            [0.37631189823150635],
            [0.26310813426971436],
            [0.3392786681652069],
            [0.29478660225868225],
            [0.3652712106704712],
            [0.37053292989730835]
        ]

        # different types of preprocessing pipelines, 'lcn' is for using LCN, 'aug{X}' for augmentations
        if preproc == 'lcn':
            test_transform = transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    [min_max_l1[normal_class][0]], [min_max_l1[normal_class][1] - min_max_l1[normal_class][0]]
                )
            ])
        elif preproc in ['', None, 'default', 'none']:
            test_transform = transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1']:
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
            transform = transforms.Compose([
                transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
                transforms.RandomCrop(28, padding=3),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.01 * torch.randn_like(x)),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['lcnaug1']:
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    [min_max_l1[normal_class][0]], [min_max_l1[normal_class][1] - min_max_l1[normal_class][0]]
                )
            ])
            transform = transforms.Compose([
                transforms.RandomCrop(28, padding=2),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    [min_max_l1[normal_class][0]], [min_max_l1[normal_class][1] - min_max_l1[normal_class][0]]
                )
            ])
        else:
            raise ValueError('Preprocessing pipeline {} is not known.'.format(preproc))

        target_transform = transforms.Lambda(
            lambda x: self.anomalous_label if x in self.outlier_classes else self.nominal_label
        )
        all_transform = None
        if online_supervision:
            if noise_mode not in ['emnist']:
                self.raw_shape = (1, 28, 28)
                all_transform = MultiCompose([
                    OnlineSupervisor(self, supervise_mode, noise_mode, oe_limit),
                    transforms.Lambda(lambda x: x.squeeze() if isinstance(x, torch.Tensor) else x)
                ])
            else:
                all_transform = MultiCompose([OnlineSupervisor(self, supervise_mode, noise_mode, oe_limit), ])
            self.raw_shape = (28, 28)

        train_set = MyFashionMNIST(root=self.root, train=True, download=True, normal_classes=self.normal_classes,
                                   transform=transform, target_transform=target_transform, all_transform=all_transform)

        self._generate_artificial_anomalies_train_set(
            supervise_mode if not online_supervision else 'unsupervised',  # gets rid of true anomalous samples
            noise_mode, oe_limit, train_set, normal_class
        )

        self._test_set = MyFashionMNIST(root=self.root, train=False, download=True, normal_classes=self.normal_classes,
                                        transform=test_transform, target_transform=target_transform)
Esempio n. 3
0
    def __init__(self, root: str, normal_class: int, preproc: str, nominal_label: int,
                 supervise_mode: str, noise_mode: str, oe_limit: int, online_supervision: bool,
                 logger: Logger = None):
        """
        This is a general-purpose implementation for custom datasets.
        It expects the data being contained in class folders and distinguishes between
        (1) the one-vs-rest (ovr) approach where one class is considered normal
        and is tested against all other classes being anomalous
        (2) the general approach where each class folder contains a normal data folder and an anomalous data folder.
        The :attr:`ovr` determines this.

        For (1) the data folders have to follow this structure:
        root/custom/train/dog/xxx.png
        root/custom/train/dog/xxy.png
        root/custom/train/dog/xxz.png

        root/custom/train/cat/123.png
        root/custom/train/cat/nsdf3.png
        root/custom/train/cat/asd932_.png

        For (2):
        root/custom/train/hazelnut/normal/xxx.png
        root/custom/train/hazelnut/normal/xxy.png
        root/custom/train/hazelnut/normal/xxz.png
        root/custom/train/hazelnut/anomalous/xxa.png    -- may be used during training for a semi-supervised setting

        root/custom/train/screw/normal/123.png
        root/custom/train/screw/normal/nsdf3.png
        root/custom/train/screw/anomalous/asd932_.png   -- may be used during training for a semi-supervised setting

        The same holds for the test set, where "train" has to be replaced by "test".

        To take advantage of available binary ground-truth anomaly maps, you need to place them in separate folders.
        That is, create the folders "train_maps" and/or "test_maps" and place the corresponding maps using the same structure
        and name as above. For instance:
        root/custom/train_maps/dog/xxx.png    for    root/custom/train/dog/xxx.png or
        root/custom/test_maps/screw/normal/123.png   for   root/custom/test/screw/normal/123.png

        The ground-truth maps need to be binary; i.e., need to be in {0, 255}^{1 x h x w}, where 255 marks anomalous regions.
        Missing maps are replaced by tensors filled with the corresponding label (e.g., 255 for anomalies).
        That is, a completely white or black image.
        However, for computing a pixel-wise ROC score measuring the explanation performance, all maps for the anomalous
        test samples are required. Otherwise, the pixel-wise ROC evaluation is skipped.


        :param root: root directory where data is found.
        :param normal_class: the class considered nominal.
        :param preproc: the kind of preprocessing pipeline.
        :param nominal_label: the label that marks nominal samples in training. The scores in the heatmaps always
            rate label 1, thus usually the nominal label is 0, s.t. the scores are anomaly scores.
        :param supervise_mode: the type of generated artificial anomalies.
            See :meth:`fcdd.datasets.bases.TorchvisionDataset._generate_artificial_anomalies_train_set`.
        :param noise_mode: the type of noise used, see :mod:`fcdd.datasets.noise_mode`.
        :param oe_limit: limits the number of different anomalies in case of Outlier Exposure (defined in noise_mode).
        :param online_supervision: whether to sample anomalies online in each epoch,
            or offline before training (same for all epochs in this case).
        :param logger: logger.
        """
        super().__init__(
            root, normal_class, preproc, nominal_label, supervise_mode, noise_mode, oe_limit, online_supervision, logger
        )

        # img_gtm transforms transform images and corresponding ground-truth maps jointly.
        # This is critically required for random geometric transformations as otherwise
        # the maps would not match the images anymore.
        if preproc in ['', None, 'default', 'none']:
            img_gtm_test_transform = img_gtm_transform = MultiCompose([
                transforms.Resize((self.shape[-2], self.shape[-1]), Image.NEAREST),
                transforms.ToTensor(),
            ])
            test_transform = transform = transforms.Compose([
                transforms.Normalize(self.mean, self.std)
            ])
        elif preproc in ['aug1']:
            img_gtm_transform = MultiCompose([
                transforms.RandomChoice([
                    MultiCompose([
                        transforms.Resize((self.raw_shape[-2], self.raw_shape[-1]), Image.NEAREST),
                        transforms.RandomCrop((self.shape[-2], self.shape[-1]), Image.NEAREST),
                    ]),
                    transforms.Resize((self.shape[-2], self.shape[-1]), Image.NEAREST),
                ]),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
            ])
            img_gtm_test_transform = MultiCompose(
                [transforms.Resize((self.shape[-2], self.shape[-1]), Image.NEAREST), transforms.ToTensor()]
            )
            test_transform = transforms.Compose([
                transforms.Normalize(self.mean, self.std)
            ])
            transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.ColorJitter(brightness=0.01, contrast=0.01, saturation=0.01, hue=0.01),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.001 * torch.randn_like(x)),
                transforms.Normalize(self.mean, self.std)
            ])
        #  here you could define other pipelines with augmentations
        else:
            raise ValueError('Preprocessing pipeline {} is not known.'.format(preproc))

        self._train_set = ImageFolderDatasetGTM(
            self.trainpath, supervise_mode, self.raw_shape, self.ovr, self.nominal_label, self.anomalous_label,
            normal_classes=self.normal_classes,
            transform=transform, target_transform=self.target_transform, all_transform=self.all_transform,
            img_gtm_transform=img_gtm_transform
        )
        if supervise_mode == 'other':  # (semi)-supervised setting
            self.balance_dataset(gtm=True)
        else:
            self._train_set = GTSubset(
                self._train_set, np.argwhere(
                    (np.asarray(self._train_set.anomaly_labels) == self.nominal_label) *
                    np.isin(self._train_set.targets, self.normal_classes)
                ).flatten().tolist()
            )

        self._test_set = ImageFolderDatasetGTM(
            self.testpath, supervise_mode, self.raw_shape, self.ovr, self.nominal_label, self.anomalous_label,
            normal_classes=self.normal_classes,
            transform=test_transform, target_transform=self.target_transform,
            img_gtm_transform=img_gtm_test_transform
        )
        if not self.ovr:
            self._test_set = GTSubset(
                self._test_set, get_target_label_idx(self._test_set.targets, np.asarray(self.normal_classes))
            )
Esempio n. 4
0
    def __init__(self,
                 root: str,
                 normal_class: int,
                 preproc: str,
                 nominal_label: int,
                 supervise_mode: str,
                 noise_mode: str,
                 oe_limit: int,
                 online_supervision: bool,
                 logger: Logger = None):
        """
        AD dataset for PascalVoc. Considers only the "horse" class, thus normal_class must be 0!
        :param root: root directory where data is found or is to be downloaded to
        :param normal_class: the class considered nominal
        :param preproc: the kind of preprocessing pipeline
        :param nominal_label: the label that marks nominal samples in training. The scores in the heatmaps always
            rate label 1, thus usually the nominal label is 0, s.t. the scores are anomaly scores.
        :param supervise_mode: the type of generated artificial anomalies.
            See :meth:`fcdd.datasets.bases.TorchvisionDataset._generate_artificial_anomalies_train_set`.
        :param noise_mode: the type of noise used, see :mod:`fcdd.datasets.noise_mode`.
        :param oe_limit: limits the number of different anomalies in case of Outlier Exposure (defined in noise_mode)
        :param online_supervision: whether to sample anomalies online in each epoch,
            or offline before training (same for all epochs in this case)
        :param logger: logger
        """
        super().__init__(root, logger=logger)
        assert normal_class == 0, 'One cls dataset with horse only!'
        if supervise_mode != 'unsupervised':
            assert online_supervision, 'PascalVoc artificial anomaly generation needs to be applied online'

        self.n_classes = 2  # 0: normal, 1: outlier
        self.shape = (3, 224, 224)
        self.raw_shape = (3, 224, 224)
        self.outlier_classes = list(range(0, 10))
        self.outlier_classes.remove(normal_class)
        assert nominal_label in [0, 1]
        self.nominal_label = nominal_label
        self.anomalous_label = 1 if self.nominal_label == 0 else 0
        self.normal_classes = tuple([self.nominal_label])

        if self.nominal_label != 0:
            print('Swapping labels, i.e. anomalies are 0 and nominals are 1.')

        # mean and std of original pictures
        mean = (0.4469, 0.4227, 0.3906)
        std = (0.2691, 0.2659, 0.2789)

        all_transform = []
        if preproc in ['', None, 'default', 'none']:
            test_transform = transform = transforms.Compose([
                transforms.Resize(
                    (self.shape[-1], self.raw_shape[-1]
                     )),  # not short edge because that skips watermark
                transforms.ToTensor(),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1']:
            test_transform = transforms.Compose([
                transforms.Resize((self.raw_shape[-1], self.raw_shape[-1])),
                transforms.CenterCrop(self.shape[-1]),
                transforms.ToTensor(),
                transforms.Normalize(mean, std)
            ])
            transform = transforms.Compose([
                transforms.Resize((self.raw_shape[-1], self.raw_shape[-1])),
                transforms.ColorJitter(brightness=0.01,
                                       contrast=0.01,
                                       saturation=0.01,
                                       hue=0.01),
                transforms.RandomCrop(self.shape[-1]),
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x + 0.001 * torch.randn_like(x)),
                transforms.Normalize(mean, std)
            ])
        else:
            raise ValueError(
                'Preprocessing pipeline {} is not known.'.format(preproc))

        if online_supervision:
            all_transform = MultiCompose([
                # in case of OutlierExposure with ImageNet, exclude VOC names from classes!
                OnlineSupervisor(self,
                                 supervise_mode,
                                 noise_mode,
                                 oe_limit,
                                 exclude=MyPascalVoc.NAMES),
                *all_transform
            ])
        else:
            all_transform = MultiCompose(all_transform)

        train_set = MyPascalVoc(root=self.root,
                                split='train',
                                download=True,
                                nominal_label=self.nominal_label,
                                transform=transform,
                                all_transform=all_transform,
                                anomlbl=self.anomalous_label)

        self._generate_artificial_anomalies_train_set(
            supervise_mode if not online_supervision else 'unsupervised',
            noise_mode, oe_limit, train_set, normal_class)

        self._test_set = MyPascalVoc(root=self.root,
                                     split='val',
                                     download=True,
                                     nominal_label=self.nominal_label,
                                     transform=test_transform,
                                     anomlbl=self.anomalous_label)
Esempio n. 5
0
    def __init__(self, root: str, normal_class: int, preproc: str, nominal_label: int,
                 supervise_mode: str, noise_mode: str, oe_limit: int, online_supervision: bool,
                 logger: Logger = None, raw_shape: int = 240):
        """
        AD dataset for MVTec-AD. If no MVTec data is found in the root directory,
        the data is downloaded and processed to be stored in torch tensors with appropriate size (defined in raw_shape).
        This speeds up data loading at the start of training.
        :param root: root directory where data is found or is to be downloaded to
        :param normal_class: the class considered nominal
        :param preproc: the kind of preprocessing pipeline
        :param nominal_label: the label that marks nominal samples in training. The scores in the heatmaps always
            rate label 1, thus usually the nominal label is 0, s.t. the scores are anomaly scores.
        :param supervise_mode: the type of generated artificial anomalies.
            See :meth:`fcdd.datasets.bases.TorchvisionDataset._generate_artificial_anomalies_train_set`.
        :param noise_mode: the type of noise used, see :mod:`fcdd.datasets.noise_mode`.
        :param oe_limit: limits the number of different anomalies in case of Outlier Exposure (defined in noise_mode)
        :param online_supervision: whether to sample anomalies online in each epoch,
            or offline before training (same for all epochs in this case).
        :param logger: logger
        :param raw_shape: the height and width of the raw MVTec images before passed through the preprocessing pipeline.
        """
        super().__init__(root, logger=logger)

        self.n_classes = 2  # 0: normal, 1: outlier
        self.shape = (3, 224, 224)
        self.raw_shape = (3,) + (raw_shape, ) * 2
        self.normal_classes = tuple([normal_class])
        self.outlier_classes = list(range(0, 15))
        self.outlier_classes.remove(normal_class)
        assert nominal_label in [0, 1], 'GT maps are required to be binary!'
        self.nominal_label = nominal_label
        self.anomalous_label = 1 if self.nominal_label == 0 else 0

        # min max after gcn l1 norm has been applied
        min_max_l1 = [
            [(-1.3336724042892456, -1.3107913732528687, -1.2445921897888184),
             (1.3779616355895996, 1.3779616355895996, 1.3779616355895996)],
            [(-2.2404820919036865, -2.3387579917907715, -2.2896201610565186),
             (4.573435306549072, 4.573435306549072, 4.573435306549072)],
            [(-3.184587001800537, -3.164201259613037, -3.1392977237701416),
             (1.6995097398757935, 1.6011602878570557, 1.5209171772003174)],
            [(-3.0334954261779785, -2.958242416381836, -2.7701096534729004),
             (6.503103256225586, 5.875098705291748, 5.814228057861328)],
            [(-3.100773334503174, -3.100773334503174, -3.100773334503174),
             (4.27892541885376, 4.27892541885376, 4.27892541885376)],
            [(-3.6565306186676025, -3.507692813873291, -2.7635035514831543),
             (18.966819763183594, 21.64590072631836, 26.408710479736328)],
            [(-1.5192601680755615, -2.2068002223968506, -2.3948357105255127),
             (11.564697265625, 10.976534843444824, 10.378695487976074)],
            [(-1.3207964897155762, -1.2889339923858643, -1.148416519165039),
             (6.854909896850586, 6.854909896850586, 6.854909896850586)],
            [(-0.9883341193199158, -0.9822461605072021, -0.9288841485977173),
             (2.290637969970703, 2.4007883071899414, 2.3044068813323975)],
            [(-7.236185073852539, -7.236185073852539, -7.236185073852539),
             (3.3777384757995605, 3.3777384757995605, 3.3777384757995605)],
            [(-3.2036616802215576, -3.221003532409668, -3.305514335632324),
             (7.022546768188477, 6.115569114685059, 6.310940742492676)],
            [(-0.8915618658065796, -0.8669204115867615, -0.8002046346664429),
             (4.4255571365356445, 4.642300128936768, 4.305730819702148)],
            [(-1.9086798429489136, -2.0004451274871826, -1.929288387298584),
             (5.463134765625, 5.463134765625, 5.463134765625)],
            [(-2.9547364711761475, -3.17536997795105, -3.143850803375244),
             (5.305514812469482, 4.535006523132324, 3.3618252277374268)],
            [(-1.2906527519226074, -1.2906527519226074, -1.2906527519226074),
             (2.515115737915039, 2.515115737915039, 2.515115737915039)]
        ]

        # mean and std of original images per class
        mean = [
            (0.53453129529953, 0.5307118892669678, 0.5491130352020264),
            (0.326835036277771, 0.41494372487068176, 0.46718254685401917),
            (0.6953922510147095, 0.6663950085639954, 0.6533040404319763),
            (0.36377236247062683, 0.35087138414382935, 0.35671544075012207),
            (0.4484519958496094, 0.4484519958496094, 0.4484519958496094),
            (0.2390524297952652, 0.17620408535003662, 0.17206747829914093),
            (0.3919542133808136, 0.2631213963031769, 0.22006843984127045),
            (0.21368788182735443, 0.23478130996227264, 0.24079132080078125),
            (0.30240726470947266, 0.3029524087905884, 0.32861486077308655),
            (0.7099748849868774, 0.7099748849868774, 0.7099748849868774),
            (0.4567880630493164, 0.4711957275867462, 0.4482630491256714),
            (0.19987481832504272, 0.18578395247459412, 0.19361256062984467),
            (0.38699793815612793, 0.276934415102005, 0.24219433963298798),
            (0.6718143820762634, 0.47696375846862793, 0.35050269961357117),
            (0.4014520049095154, 0.4014520049095154, 0.4014520049095154)
        ]
        std = [
            (0.3667600452899933, 0.3666728734970093, 0.34991779923439026),
            (0.15321789681911469, 0.21510766446590424, 0.23905669152736664),
            (0.23858436942100525, 0.2591284513473511, 0.2601949870586395),
            (0.14506031572818756, 0.13994529843330383, 0.1276693195104599),
            (0.1636597216129303, 0.1636597216129303, 0.1636597216129303),
            (0.1688646823167801, 0.07597383111715317, 0.04383210837841034),
            (0.06069392338395119, 0.04061736911535263, 0.0303945429623127),
            (0.1602524220943451, 0.18222476541996002, 0.15336430072784424),
            (0.30409011244773865, 0.30411985516548157, 0.28656429052352905),
            (0.1337062269449234, 0.1337062269449234, 0.1337062269449234),
            (0.12076705694198608, 0.13341768085956573, 0.12879984080791473),
            (0.22920562326908112, 0.21501320600509644, 0.19536510109901428),
            (0.20621345937252045, 0.14321941137313843, 0.11695228517055511),
            (0.08259467780590057, 0.06751163303852081, 0.04756828024983406),
            (0.32304847240448, 0.32304847240448, 0.32304847240448)
        ]

        # different types of preprocessing pipelines, 'lcn' is for using LCN, 'aug{X}' for augmentations
        img_gt_transform, img_gt_test_transform = None, None
        all_transform = []
        if preproc == 'lcn':
            assert self.raw_shape == self.shape, 'in case of no augmentation, raw shape needs to fit net input shape'
            img_gt_transform = img_gt_test_transform = MultiCompose([
                transforms.ToTensor(),
            ])
            test_transform = transform = transforms.Compose([
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    min_max_l1[normal_class][0],
                    [ma - mi for ma, mi in zip(min_max_l1[normal_class][1], min_max_l1[normal_class][0])]
                )
            ])
        elif preproc in ['', None, 'default', 'none']:
            assert self.raw_shape == self.shape, 'in case of no augmentation, raw shape needs to fit net input shape'
            img_gt_transform = img_gt_test_transform = MultiCompose([
                transforms.ToTensor(),
            ])
            test_transform = transform = transforms.Compose([
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['aug1']:
            img_gt_transform = MultiCompose([
                transforms.RandomChoice(
                    [transforms.RandomCrop(self.shape[-1], padding=0), transforms.Resize(self.shape[-1], Image.NEAREST)]
                ),
                transforms.ToTensor(),
            ])
            img_gt_test_transform = MultiCompose(
                [transforms.Resize(self.shape[-1], Image.NEAREST), transforms.ToTensor()]
            )
            test_transform = transforms.Compose([
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
            transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.RandomChoice([
                    transforms.ColorJitter(0.04, 0.04, 0.04, 0.04),
                    transforms.ColorJitter(0.005, 0.0005, 0.0005, 0.0005),
                ]),
                transforms.ToTensor(),
                transforms.Lambda(
                    lambda x: (x + torch.randn_like(x).mul(np.random.randint(0, 2)).mul(x.std()).mul(0.1)).clamp(0, 1)
                ),
                transforms.Normalize(mean[normal_class], std[normal_class])
            ])
        elif preproc in ['lcnaug1']:
            img_gt_transform = MultiCompose([
                transforms.RandomChoice(
                    [transforms.RandomCrop(self.shape[-1], padding=0), transforms.Resize(self.shape[-1], Image.NEAREST)]
                ),
                transforms.ToTensor(),
            ])
            img_gt_test_transform = MultiCompose(
                [transforms.Resize(self.shape[-1], Image.NEAREST), transforms.ToTensor()]
            )
            test_transform = transforms.Compose([
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    min_max_l1[normal_class][0],
                    [ma - mi for ma, mi in zip(min_max_l1[normal_class][1], min_max_l1[normal_class][0])]
                )
            ])
            transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.RandomChoice([
                        transforms.ColorJitter(0.04, 0.04, 0.04, 0.04),
                        transforms.ColorJitter(0.005, 0.0005, 0.0005, 0.0005),
                ]),
                transforms.ToTensor(),
                transforms.Lambda(
                    lambda x: (x + torch.randn_like(x).mul(np.random.randint(0, 2)).mul(x.std()).mul(0.1)).clamp(0, 1)
                ),
                transforms.Lambda(lambda x: local_contrast_normalization(x, scale='l1')),
                transforms.Normalize(
                    min_max_l1[normal_class][0],
                    [ma - mi for ma, mi in zip(min_max_l1[normal_class][1], min_max_l1[normal_class][0])]
                )
            ])
        else:
            raise ValueError('Preprocessing pipeline {} is not known.'.format(preproc))

        target_transform = transforms.Lambda(
            lambda x: self.anomalous_label if x in self.outlier_classes else self.nominal_label
        )

        if online_supervision:
            # order: target_transform -> all_transform -> img_gt transform -> transform
            assert supervise_mode not in ['supervised'], 'supervised mode works only offline'
            all_transform = MultiCompose([
                *all_transform,
                OnlineSupervisor(self, supervise_mode, noise_mode, oe_limit),
            ])
            train_set = MvTec(
                root=self.root, split='train', download=True,
                target_transform=target_transform,
                img_gt_transform=img_gt_transform, transform=transform, all_transform=all_transform,
                shape=self.raw_shape, normal_classes=self.normal_classes,
                nominal_label=self.nominal_label, anomalous_label=self.anomalous_label,
                enlarge=ADMvTec.enlarge
            )
            self._train_set = GTSubset(
                train_set, get_target_label_idx(train_set.targets.clone().data.cpu().numpy(), self.normal_classes)
            )
            test_set = MvTec(
                root=self.root, split='test_anomaly_label_target', download=True,
                target_transform=transforms.Lambda(
                    lambda x: self.anomalous_label if x != MvTec.normal_anomaly_label_idx else self.nominal_label
                ),
                img_gt_transform=img_gt_test_transform, transform=test_transform, shape=self.raw_shape,
                normal_classes=self.normal_classes,
                nominal_label=self.nominal_label, anomalous_label=self.anomalous_label,
                enlarge=False
            )
            test_idx_normal = get_target_label_idx(test_set.targets.clone().data.cpu().numpy(), self.normal_classes)
            self._test_set = GTSubset(test_set, test_idx_normal)
        else:
            all_transform = MultiCompose([
                *all_transform,
            ]) if len(all_transform) > 0 else None
            train_set = MvTec(
                root=self.root, split='train', download=True,
                target_transform=target_transform, all_transform=all_transform,
                img_gt_transform=img_gt_transform, transform=transform, shape=self.raw_shape,
                normal_classes=self.normal_classes,
                nominal_label=self.nominal_label, anomalous_label=self.anomalous_label,
                enlarge=ADMvTec.enlarge
            )
            test_set = MvTec(
                root=self.root, split='test_anomaly_label_target', download=True,
                target_transform=transforms.Lambda(
                    lambda x: self.anomalous_label if x != MvTec.normal_anomaly_label_idx else self.nominal_label
                ),
                img_gt_transform=img_gt_test_transform, transform=test_transform, shape=self.raw_shape,
                normal_classes=self.normal_classes,
                nominal_label=self.nominal_label, anomalous_label=self.anomalous_label, enlarge=False
            )
            test_idx_normal = get_target_label_idx(test_set.targets.clone().data.cpu().numpy(), self.normal_classes)
            self._test_set = GTSubset(test_set, test_idx_normal)
            self._generate_artificial_anomalies_train_set(supervise_mode, noise_mode, oe_limit, train_set, normal_class)
Esempio n. 6
0
    def __init__(self,
                 size: torch.Size,
                 clsses: List[int],
                 root: str = None,
                 limit_var: int = np.infty,
                 limit_per_anomaly=True,
                 download=True,
                 logger: Logger = None,
                 gt=False,
                 remove_nominal=True):
        """
        Outlier Exposure dataset for MVTec-AD. Considers only a part of the classes.
        :param size: size of the samples in n x c x h x w, samples will be resized to h x w. If n is larger than the
            number of samples available in MVTec-AD, dataset will be enlarged by repetitions to fit n.
            This is important as exactly n images are extracted per iteration of the data_loader.
            For online supervision n should be set to 1 because only one sample is extracted at a time.
        :param clsses: the classes that are to be considered, i.e. all other classes are dismissed.
        :param root: root directory where data is found or is to be downloaded to.
        :param limit_var: limits the number of different samples, i.e. randomly chooses limit_var many samples
            from all available ones to be the training data.
        :param limit_per_anomaly: whether limit_var limits the number of different samples per type
            of defection or overall.
        :param download: whether to download the data if it is not found in root.
        :param logger: logger.
        :param gt: whether ground-truth maps are to be included in the data.
        :param remove_nominal: whether nominal samples are to be excluded from the data.
        """
        assert len(size) == 4 and size[2] == size[3]
        assert size[1] in [1, 3]
        self.root = root
        self.logger = logger
        self.size = size
        self.use_gt = gt
        self.clsses = clsses
        super().__init__(root,
                         'test',
                         download=download,
                         shape=size[1:],
                         logger=logger)

        self.img_gt_transform = MultiCompose(
            [transforms.Resize((size[2], size[2])),
             transforms.ToTensor()])
        self.picks = get_target_label_idx(self.targets, self.clsses)
        if remove_nominal:
            self.picks = sorted(
                list(
                    set.intersection(
                        set(self.picks),
                        set((self.anomaly_labels !=
                             self.normal_anomaly_label_idx
                             ).nonzero().squeeze().tolist()))))
        if limit_per_anomaly and limit_var is not None:
            new_picks = []
            for l in set(self.anomaly_labels.tolist()):
                linclsses = list(
                    set.intersection(
                        set(self.picks),
                        set((self.anomaly_labels == l
                             ).nonzero().squeeze().tolist())))
                if len(linclsses) == 0:
                    continue
                if limit_var < len(linclsses):
                    new_picks.extend(
                        np.random.choice(linclsses,
                                         size=limit_var,
                                         replace=False))
                else:
                    self.logprint(
                        'OEMvTec shall be limited to {} samples per anomaly label, '
                        'but MvTec anomaly label {} contains only {} samples, thus using all.'
                        .format(limit_var, self.anomaly_label_strings[l],
                                len(linclsses)),
                        fps=False)
                    new_picks.extend(linclsses)
            self.picks = sorted(new_picks)
        else:
            if limit_var is not None and limit_var < len(self):
                self.picks = np.random.choice(self.picks,
                                              size=limit_var,
                                              replace=False)
            if limit_var is not None and limit_var > len(self):
                self.logprint(
                    'OEMvTec shall be limited to {} samples, but MvTec contains only {} samples, thus using all.'
                    .format(limit_var, len(self)))
        if len(self) < size[0]:
            raise NotImplementedError()