Esempio n. 1
0
    def __init__(
        self,
        cfg,
        confidence_thresholds_for_classes,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_thresholds_for_classes = torch.tensor(confidence_thresholds_for_classes)
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim
Esempio n. 2
0
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")

        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        #import pdb
        #pdb.set_trace()

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [
            dataset.contiguous_category_id_to_json_id[i] for i in labels
        ]

        coco_results.extend([{
            "image_id": original_id,
            "category_id": mapped_labels[k],
            "segmentation": rle,
            "score": scores[k],
        } for k, rle in enumerate(rles)])
    return coco_results
Esempio n. 3
0
    def __init__(
        self,
        cfg,
        confidence_thresholds_for_classes,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        # self.CATEGORIES = ['__background', 'Person', 'Car', 'Train', 'Rider', 'Truck', 'Motorcycle', 'Bicycle', 'Bus']
        self.CATEGORIES = ['__background', 'Car']
        self.confidence_thresholds_for_classes = torch.tensor(
            confidence_thresholds_for_classes)
        self.cfg = cfg.clone()
        self.min_image_size = min_image_size
        self.model = {}
        self.device = torch.device(cfg.MODEL.DEVICE)

        backbone = build_backbone(cfg).to(self.device).eval()
        fcos = build_rpn(cfg, backbone.out_channels).to(self.device).eval()
        self.model["backbone"] = backbone
        self.model["fcos"] = fcos
        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg,
                                             self.model,
                                             save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_thresholds_for_classes = torch.tensor(
            confidence_thresholds_for_classes)
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim
Esempio n. 4
0
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        input_w, input_h = prediction.size
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        if masks.dim() == 3:
            # resize masks
            stride_mask = prediction.get_field('stride')
            h = (masks.shape[1] * stride_mask.float() * image_height / input_h).ceil().long()
            w = (masks.shape[2] * stride_mask.float() * image_width / input_w).ceil().long()
            mask_th = prediction.get_field('mask_th').cuda()
            masks = masks.cuda()
            masks = torch.nn.functional.interpolate(input=masks.unsqueeze(1).float(), size=(h, w), mode="bilinear", align_corners=False).gt(mask_th)
            masks = masks[:, :, :image_height, :image_width]
            masks = masks.cpu()
        else:
            # t = time.time()
            # Masker is necessary only if masks haven't been already resized.
            if list(masks.shape[-2:]) != [image_height, image_width]:
                masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
                masks = masks[0]
            # logger.info('Time mask: {}'.format(time.time() - t))
            # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results