args = parser.parse_args() pprint(vars(args)) set_gpu(args.gpu) save_path1 = '-'.join([args.dataset, args.model_type, 'ProtoNet']) save_path2 = '_'.join([ str(args.shot), str(args.query), str(args.way), str(args.step_size), str(args.gamma), str(args.lr), str(args.temperature) ]) args.save_path = save_path1 + '_' + save_path2 ensure_path(args.save_path) if args.dataset == 'MiniImageNet': # Handle MiniImageNet from feat.dataloader.mini_imagenet import MiniImageNet as Dataset elif args.dataset == 'CUB': from feat.dataloader.cub import CUB as Dataset else: raise ValueError('Non-supported Dataset.') trainset = Dataset('train', args) train_sampler = CategoriesSampler(trainset.label, 100, args.way, args.shot + args.query) train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler, num_workers=8,
args = parser.parse_args() pprint(vars(args)) set_gpu(args.gpu) save_path1 = '-'.join([args.dataset, args.model_type, 'ProtoNet']) save_path2 = '_'.join([ str(args.shot), str(args.query), str(args.way), str(args.step_size), str(args.gamma), str(args.lr), str(args.temperature) ]) args.save_path = osp.join(args.save_path, osp.join(save_path1, save_path2)) ensure_path(save_path1, remove=False) ensure_path(args.save_path) if args.dataset == 'MiniImageNet': # Handle MiniImageNet from feat.dataloader.mini_imagenet import MiniImageNet as Dataset elif args.dataset == 'CUB': from feat.dataloader.cub import CUB as Dataset elif args.dataset == 'TieredImageNet': from feat.dataloader.tiered_imagenet import tieredImageNet as Dataset else: raise ValueError('Non-supported Dataset.') trainset = Dataset('train', args) train_sampler = CategoriesSampler(trainset.label, 5, args.way, args.shot + args.query)