exit() if not test: print("Empty input") if parsed_args.o: print(test) f = Feature() sess = tf.Session() W = tf.Variable(tf.random_uniform([300000, 1], -1.0, 1.0), name="Weigh") b = tf.Variable(tf.zeros([1]), name="Bias") saver = tf.train.Saver() saver.restore(sess, 'my-model-20000') x = f.features_for_tensorflow(test) y = tf.add(tf.matmul(W, x, transpose_a=True), b) comment = sess.run(y) # output if parsed_args.l: print(clf.predict([f.features(test)])) print(clf.predict_proba([f.features(test)])) print(comment[0][0]) else: print("Result:") if clf.predict([f.features(test)]): print("The content is politics-related") else: print("The content is not politics-related") print("Probability of the content being politics-related: "+str(clf.predict_proba([f.features(test)]))) print("Predicted rating (推數減噓數): "+str(comment[0][0]))
# coding=utf-8 import numpy as np from feature import Counter, Feature import sqlite3 db = sqlite3.connect('ptt.db') cur = db.execute('select * from articles') f = Feature() a = 0 for i in cur: a += 1 try: f.features(i[5]) except: print(i[5]) print(f.size()) f.store()