regressor.fit(input, target) mult = 1 #provider.multiplier results = regressor.predict(input) print(results) w = open('output4_1_sr.txt', 'w') for i, line in enumerate(results): w.write('%f;%f\n' % (target[i] * mult, line * mult)) w.close() input = [] target = [] etrue = [] epredict = [] for d in provider.getTestData(): input.append(d[0]) target.append(d[1][0]) results = regressor.predict(input) w = open('output4_2_sr.txt', 'w') for i, line in enumerate(results): w.write('%f;%f\n' % (target[i] * mult, line * mult)) w.close() w = open('rt_mse.txt', 'w') w.write('%f;\n' % sqrt(mean_squared_error(target, results))) w.close() plt.plot(target, 'b', results, 'r') plt.ylabel('Reikšmė') plt.xlabel('Masyvo elementas') plt.title('Regression tree grafikas') plt.show()
regressor = LinearRegression() regressor.fit(input, target) print(regressor.coef_) mult = 1 #reducer.provider.multiplier results = regressor.predict(input) print(results) w = open('output2_1_s.txt', 'w') for i, line in enumerate(results): w.write('%f;%f\n' % (target[i] * mult, line * mult)) w.close() input = [] target = [] for d in reducer.getTestData(): input.append(d[0]) target.append(d[1][0]) results = regressor.predict(input) w = open('output2_2_s.txt', 'w') for i, line in enumerate(results): w.write('%f;%f\n' % (target[i] * mult, line * mult)) w.close() class Linear: def __init__(self, provider): self.provider = provider input = [] target = [] for d in self.provider.getLearnData():