Esempio n. 1
0
 def setUp(self):
     self.a = sympy.Symbol("a")*sympy.Symbol("a")
     self.nan = nan
     self.n = NewArray([1.0, 1,  Inf])
     self.x = sympy.Symbol("x")
     self.k = sympy.Symbol("k")
     self.y = sympy.Symbol("y")
     self.z = sympy.Symbol("z")
     self.arr3 = NewArray([self.y, self.z, self.x])
     self.arr3_ = NewArray([self.x, self.z, self.k])
     self.arr3_NaN = NewArray([self.x, self.z, nan])
     self.arr4 = NewArray([self.x, self.y, self.z, self.k])
Esempio n. 2
0
 def test_sym_func():
     a = 1
     b = sympy.Symbol("x")
     c = NewArray((sympy.Symbol("x"), sympy.Symbol("y")))
     d = NewArray((sympy.Symbol("x"), sympy.Symbol("x"), sympy.Symbol("z")))
     e = NewArray([sympy.Symbol("x")] * self_grpup)
     sym_func = funcs["sym_func"]
     sym_func(a)
     sym_func(b)
     sym_func(c)
     s = sym_func(d)
     s = sym_func(e)
Esempio n. 3
0
    def test_sub(self):
        self.assertEqual(self.arr3 - self.a, NewArray([self.y - self.a, self.z - self.a, self.x - self.a]))

        arrs = NewArray(
            [i - j for i, j in zip(self.arr3_ , self.arr3)]
        )
        self.assertEqual(self.arr3_ - self.arr3,arrs)

        self.assertNotEqual(self.arr3_NaN - self.arr3,arrs)

        arrs2 = NewArray(
            [i - j for i, j in zip(self.n,self.arr3)]
        )
        self.assertEqual(self.n - self.arr3, arrs2)
Esempio n. 4
0
    def test_rdiv(self):
        self.assertEqual(self.a / self.arr3, NewArray([self.a/self.y ,self.a/ self.z , self.a/self.x]))
        # self.assertEqual(self.a / self.arr3, 1/NewArray([self.y / self.a, self.z / self.a, self.x / self.a]))

        arrs = NewArray(
            [i / j for i, j in zip(self.arr3_ , self.arr3)]
        )
        self.assertEqual(self.arr3_ / self.arr3,arrs)

        self.assertNotEqual(self.arr3_NaN / self.arr3,arrs)

        arrs2 = NewArray(
            [i / j for i, j in zip(self.n,self.arr3)]
        )
        self.assertEqual(self.n / self.arr3, arrs2)
Esempio n. 5
0
    def test_add(self):
        self.assertEqual(self.a + self.arr3, NewArray([self.y + self.a, self.z + self.a, self.x + self.a]))
        self.assertEqual(self.arr3+self.a , NewArray([self.y + self.a, self.z + self.a, self.x + self.a]))

        arrs = NewArray(
            [i + j for i, j in zip(self.arr3_ , self.arr3)]
        )
        self.assertEqual(self.arr3_ + self.arr3,arrs)

        self.assertNotEqual(self.arr3_NaN + self.arr3,arrs)

        arrs2 = NewArray(
            [i + j for i, j in zip(self.n,self.arr3)]
        )
        self.assertEqual(self.arr3 + self.n, arrs2)
Esempio n. 6
0
    def test_mul(self):
        self.assertEqual(self.a * self.arr3, NewArray([self.y * self.a, self.z * self.a, self.x * self.a]))
        self.assertEqual(self.arr3*self.a , NewArray([self.y * self.a, self.z * self.a, self.x * self.a]))

        arrs = NewArray(
            [i * j for i, j in zip(self.arr3_ , self.arr3)]
        )
        self.assertEqual(self.arr3_ * self.arr3,arrs)

        self.assertNotEqual(self.arr3_NaN * self.arr3,arrs)

        arrs2 = NewArray(
            [i * j for i, j in zip(self.n,self.arr3)]
        )
        self.assertEqual(self.n*self.arr3, arrs2)
Esempio n. 7
0
def tsum(*ters, name="gx0"):
    """

    Parameters
    ----------
    ters: tuple of SymbolTerminalDetail
        SymbolTerminalDetail
    name: str
        sepcific the name of results.

    Returns
    -------
    SymbolTerminalDetail
    """

    for i in ters:
        assert isinstance(i, SymbolTerminalDetail), "only the SymbolTerminals can be added"
    assert all(ters[0].dim == i.dim for i in ters)
    values = np.array([i.value for i in ters])
    dim = Dim(np.array([i.dim for i in ters]))
    sym = NewArray([i.sym for i in ters], shape=(len(ters),))
    name = str(name)
    prob = sum([i.prob for i in ters]) / len(ters)
    res = SymbolTerminalDetail(values, name, dim=dim, prob=prob,
                               init_sym=sym, init_name=str(list(sym)))
    return res
Esempio n. 8
0
 def gsymf(x):
     if isinstance(x, (np.ndarray, NewArray)):
         if x.shape[0] == 2:
             res = operation(x[0], x[1])
             if keep:
                 return NewArray(res)
             else:
                 return res
         else:  # >=3
             if is_jump:
                 return x
             else:
                 res = operation(*x)
                 if keep:
                     return NewArray(res)
                 else:
                     return res
     else:  # 1
         return x
Esempio n. 9
0
 def test_mdiv(self):
     f = sym_map()["MDiv"]
     self.assertEqual(f(self.arr3), self.arr3)
     self.assertEqual(f(NewArray([self.y,self.z])), self.y/self.z)
Esempio n. 10
0
 def test_msub(self):
     f = sym_map()["MSub"]
     self.assertEqual(f(self.arr3), self.arr3)
     self.assertEqual(f(NewArray([self.y,self.z])), self.y-self.z)
Esempio n. 11
0
 def test_conv(self):
     f = sym_map()["Conv"]
     self.assertEqual(f(self.arr3), self.arr3)
     assert True==(f(NewArray([self.y,self.z]))==NewArray([self.z,self.y]))
Esempio n. 12
0
 def test_sin(self):
     f = sym_map()["exp"]
     self.assertEqual(f(self.arr3), NewArray([f(self.y),f(self.z), f(self.x)]))