Esempio n. 1
0
    def __getitem__(self, item):
        if self.images is not None:
            image = self.images[item]
            image = self.transform(image)

            if self.imputer is not None:
                vec = self.scaler.transform(self.imputer.transform(self.descs[item].reshape(1,-1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            return image, vec

        if self.cache and self.smiles[item] in self.data_cache:
            image = self.data_cache[self.smiles[item]]
            image = self.transform(image)

            if self.imputer is not None:
                vec = self.scaler.transform(self.imputer.transform(self.descs[item].reshape(1,-1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            return image, vec

        else:
            mol = Chem.MolFromSmiles(self.smiles[item])
            image = smiles_to_image(mol)
            if self.imputer is not None:
                vec = self.scaler.transform(self.imputer.transform(self.descs[item].reshape(1,-1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            if self.cache:
                self.data_cache[self.smiles[item]] = image
            image = self.transform(image)
            return image, vec
Esempio n. 2
0
    def __getitem__(self, item):
        if self.images is not None:
            image = transforms.ToPILImage()(torch.from_numpy(
                self.images[item].astype(np.float32) / 255.0))
            image = self.transform(image)

            if self.descs is None:
                return image

            if self.imputer is not None:
                vec = self.scaler.transform(
                    self.imputer.transform(self.descs[item].reshape(
                        1, -1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(
                np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            if self.use_mask:
                return image, vec, self.mask[item]
            else:
                return image, vec

        if self.cache and self.smiles[item] in self.data_cache:
            if self.use_mask:
                assert (False)
            image = self.data_cache[self.smiles[item]]
            image = self.transform(image)

            if self.imputer is not None:
                vec = self.scaler.transform(
                    self.imputer.transform(self.descs[item].reshape(
                        1, -1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(
                np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            return image, vec

        else:
            if self.use_mask:
                assert (False)
            mol = Chem.MolFromSmiles(self.smiles[item])
            image = smiles_to_image(mol)
            if self.imputer is not None:
                vec = self.scaler.transform(
                    self.imputer.transform(self.descs[item].reshape(
                        1, -1))).flatten()
            else:
                vec = self.descs[item].flatten()
            vec = torch.from_numpy(
                np.nan_to_num(vec, nan=0, posinf=0, neginf=0)).float()
            if self.cache:
                self.data_cache[self.smiles[item]] = image
            image = self.transform(image)
            return image, vec
Esempio n. 3
0
    def __getitem__(self, item):
        if self.cache and self.smiles[item] in self.data_cache:
            return self.data_cache[self.smiles[item]]
        else:
            mol = Chem.MolFromSmiles(self.smiles[item])
            image = smiles_to_image(mol)
            property = self.property_func(mol)

            # TODO align property
            if self.values == 1:
                if property is None:
                    property = -1.0
                property = torch.FloatTensor([property]).view((1))
            else:
                property = torch.from_numpy(np.nan_to_num(property, nan=0, posinf=0, neginf=0)).float()

            if self.cache:
                self.data_cache[self.smiles[item]] = (image, property)
            return image, property
Esempio n. 4
0
 def get_image(self):
     if self.image is None:
         self.image = smiles_to_image(self.mol)
         self.data['image'] = self.image
     return self.image
Esempio n. 5
0
import pandas as pd
from rdkit import Chem
from features import generateFeatures
import argparse
import pickle
from tqdm import tqdm


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', type=str, required=True)
    parser.add_argument('-o', type=str, required=True)

    return parser.parse_args()


if __name__ == '__main__':
    args = get_args()

    images = []

    smiles = pd.read_csv(args.i, header=None)
    smiles = list(smiles.iloc[:, 0])
    for smile in tqdm(smiles):
        mol = Chem.MolFromSmiles(smile)
        if mol is not None:
            image = generateFeatures.smiles_to_image(mol)
            images.append(image)
    with open(args.o, 'wb') as f:
        pickle.dump(images, f)
Esempio n. 6
0
def get_image(mol):
    image = (255 * transforms.ToTensor()(Invert()(
        generateFeatures.smiles_to_image(mol))).numpy()).astype(np.uint8)
    return image