Esempio n. 1
0
def select_features(rf):
    """
        return the index of the features that have importance above average
    """
    ft_names = feature_names()
    idx = np.arange(len(ft_names))
    importances = rf.feature_importances_
    ft = zip(idx, 100.0 * importances/importances.max())
    ft_sorted = sorted(ft, key=lambda x: x[1], reverse=True)
    return [tup[0] for tup in ft_sorted]
def select_features(rf):
    """
        return the index of the features that have importance above average
    """
    ft_names = feature_names()
    idx = np.arange(len(ft_names))
    importances = rf.feature_importances_
    ft = zip(idx, 100.0 * importances / importances.max())
    ft_sorted = sorted(ft, key=lambda x: x[1], reverse=True)
    return [tup[0] for tup in ft_sorted]
Esempio n. 3
0
def var_importance(rf):
    ft_names = feature_names()
    importances = rf.feature_importances_
    ft = zip(ft_names, 100.0 * importances/importances.max())
    ft_sorted = sorted(ft, key=lambda x: x[1])
    return np.asarray(ft_sorted)
def var_importance(rf):
    ft_names = feature_names()
    importances = rf.feature_importances_
    ft = zip(ft_names, 100.0 * importances / importances.max())
    ft_sorted = sorted(ft, key=lambda x: x[1])
    return np.asarray(ft_sorted)