def get_average_model(self, workers_idx): """ Find the average of all parameters of all layers of given workers. The average for each layer is stored as an element of a list. Args: workers_idx (list[str]): List of workers ids Returns: """ logging.info("Finding an average model for {} workers.".format( len(workers_idx))) tmp_model = FLNet().to(self.device) self.getback_model(self.workers_model, workers_idx) with torch.no_grad(): for id_, ww_id in enumerate(workers_idx): worker_model = self.workers_model[ww_id] if id_ == 0: tmp_model.conv1.weight.set_(worker_model.conv1.weight.data) tmp_model.conv1.bias.set_(worker_model.conv1.bias.data) tmp_model.conv2.weight.set_(worker_model.conv2.weight.data) tmp_model.conv2.bias.set_(worker_model.conv2.bias.data) tmp_model.fc1.weight.set_(worker_model.fc1.weight.data) tmp_model.fc1.bias.set_(worker_model.fc1.bias.data) tmp_model.fc2.weight.set_(worker_model.fc2.weight.data) tmp_model.fc2.bias.set_(worker_model.fc2.bias.data) else: tmp_model.conv1.weight.set_(tmp_model.conv1.weight.data + worker_model.conv1.weight.data) tmp_model.conv1.bias.set_(tmp_model.conv1.bias.data + worker_model.conv1.bias.data) tmp_model.conv2.weight.set_(tmp_model.conv2.weight.data + worker_model.conv2.weight.data) tmp_model.conv2.bias.set_(tmp_model.conv2.bias.data + worker_model.conv2.bias.data) tmp_model.fc1.weight.set_(tmp_model.fc1.weight.data + worker_model.fc1.weight.data) tmp_model.fc1.bias.set_(tmp_model.fc1.bias.data + worker_model.fc1.bias.data) tmp_model.fc2.weight.set_(tmp_model.fc2.weight.data + worker_model.fc2.weight.data) tmp_model.fc2.bias.set_(tmp_model.fc2.bias.data + worker_model.fc2.bias.data) for param in tmp_model.parameters(): param.data = param.data / len(workers_idx) return tmp_model
def main(start_round): logging.info("Total number of users: {}".format(args.total_users_num)) workers_idx = ["worker_" + str(i) for i in range(args.total_users_num)] workers = create_workers(hook, workers_idx) server = create_workers(hook, ['server']) server = server['server'] # if args.local_log: # utils.check_write_to_file(args.log_dir, "all_users", workers_idx) attackers_idx = None if utils.find_file(args.log_dir, "attackers"): logging.info("attackers list was found. Loading from file...") attackers_idx = utils.load_object(args.log_dir, "attackers") else: logging.error("This should not be happened in this study.") exit(1) # attackers_idx = utils.get_workers_idx(workers_idx, args.attackers_num, []) # if args.local_log: # utils.save_object(args.log_dir, "attackers", attackers_idx) mapped_datasets = dict() if utils.find_file(args.log_dir, "mapped_datasets"): logging.info("mapped_datasets was found. Loading from file...") mapped_datasets = utils.load_object(args.log_dir, "mapped_datasets") else: logging.error("This should not be happened in this study.") exit(1) # Now sort the dataset and distribute among users # mapped_ds_itr = utils.map_shards_to_worker( # utils.split_randomly_dataset( # utils.sort_mnist_dataset( # utils.fraction_of_datasets( # {"dataset": utils.load_mnist_dataset( # train=True, # transform=transforms.Compose([transforms.ToTensor(),]))}, # args.load_fraction, []) # ), # args.shards_num), # workers_idx, # args.shards_per_worker_num) # mapping to users and performin attacks # for mapped_ds in mapped_ds_itr: # for ww_id, dataset in mapped_ds.items(): # if ww_id in attackers_idx: # mapped_datasets.update( # {ww_id: FLCustomDataset( # utils.attack_shuffle_pixels(dataset.data), # dataset.targets, # transform=transforms.Compose([ # transforms.ToTensor()]) # )} # ) # else: # mapped_datasets.update(mapped_ds) # if args.local_log: # utils.save_object(args.log_dir, "mapped_datasets", mapped_datasets) server_pub_dataset = None if utils.find_file(args.log_dir, "server_pub_dataset"): logging.info("server_pub_dataset was found. Loading from file...") server_pub_dataset = utils.load_object(args.log_dir, "server_pub_dataset") else: logging.error("This should not be happened in this study.") exit(1) # if args.server_pure: # server_pub_dataset = utils.fraction_of_datasets(mapped_datasets, args.server_data_fraction) # else: # logging.info("Server data is NOT pure.") # server_pub_dataset = utils.fraction_of_datasets( # mapped_datasets, args.server_data_fraction, attackers_idx) # if args.local_log: # utils.save_object(args.log_dir, "server_pub_dataset", server_pub_dataset) federated_server_loader = dict() federated_server_loader['server'] = sy.FederatedDataLoader( server_pub_dataset.federate([server]), batch_size=args.batch_size, shuffle=True, drop_last=False) federated_train_loader = dict() logging.info("Creating federated dataloaders for workers...") for ww_id, fed_dataset in mapped_datasets.items(): federated_train_loader[ww_id] = sy.FederatedDataLoader( fed_dataset.federate([workers[ww_id]]), batch_size=args.batch_size, shuffle=False, drop_last=False) test_loader = utils.get_dataloader(utils.load_mnist_dataset( train=False, transform=transforms.Compose([ transforms.ToTensor(), ])), args.test_batch_size, shuffle=True, drop_last=False) previous_round = int(start_round) logging.info("Use explicit starting round number: {}".format(start_round)) # if utils.find_file(args.log_dir, "accuracy"): # previous_round = int(utils.get_last_round_num(args.log_dir, "accuracy")) # logging.info("Previous complete execution was found. Last run is: {}".format(previous_round)) round_start = previous_round if previous_round == 0 else previous_round + 1 round_end = round_start + ROUNDS_BREAKDOWN if round_start + ROUNDS_BREAKDOWN < args.rounds else args.rounds server_model, server_model_name = FLNet().to( args.device), "R{}_server_model".format(previous_round) server_model_path = args.log_dir + "models" if utils.find_file(server_model_path, server_model_name): logging.info( "server_model was found. Loading {} from the file...".format( server_model_name)) server_model.load_state_dict( torch.load(server_model_path + "/" + server_model_name)) server_opt = dict() server_opt['server'] = torch.optim.SGD(params=server_model.parameters(), lr=args.lr, weight_decay=args.weight_decay) test_loss, test_acc = 0.0, 0.0 with tqdm(total=min(ROUNDS_BREAKDOWN, args.rounds - round_start), leave=True, colour="green", ncols=80, desc="Round\t", bar_format=TQDM_R_BAR) as t1: for round_no in range(round_start, round_end): workers_to_be_used = random.sample(workers_idx, args.selected_users_num) workers_model = dict() for ww_id in workers_to_be_used: workers_model[ww_id] = deepcopy(server_model) # logging.info("Workers for this round: {}".format(workers_to_be_used)) if args.local_log: utils.save_object( args.log_dir, "R{}_p_pca_workers".format(round_no) if args.server_pure else \ "R{}_np_pca_workers".format(round_no) , workers_to_be_used ) train_loss = train_workers_with_attack(federated_train_loader, workers_model, workers_to_be_used, attackers_idx, round_no, args) # Find the best weights and update the server model weights = dict() if args.mode == "avg": # Each worker takes two shards of 300 random.samples. Total of 600 random.samples # per worker. Total number of random.samples is 60000. # weights = [600.0 / 60000] * args.selected_users_num for ww_id in workers_to_be_used: weights[ww_id] = 1.0 / args.selected_users_num train_loss = sum(train_loss.values()) / len(train_loss) elif args.mode == "opt": # models should be returned from the workers before calling the following functions: # Train server train_workers_with_attack(federated_server_loader, {'server': server_model}, ['server'], [], round_no, args) pass weights = utils.find_best_weights_opt(server_model, workers_model) loss = 0 for ww in train_loss: loss += weights[ww] * train_loss[ww] train_loss = loss # if args.local_log: # utils.write_to_file(args.log_dir, "opt_weights", weights, round_no=round_no) # logging.info("Update server model in this round...") server_model.load_state_dict( utils.wieghted_avg_model(weights, workers_model, workers_to_be_used)) # Apply the server model to the test dataset # logging.info("Starting model evaluation on the test dataset...") # test_loss, test_acc = test(server_model, test_loader, round_no, args) if args.local_log: # utils.write_to_file(args.log_dir, "train_loss", train_loss, round_no=round_no) # utils.save_model( # server_model.state_dict(), # "{}/{}".format(args.log_dir, "models"), # "pca_niid_np_{}_{}_server_R{}".format(args.mode, args.attackers_num, round_no) if not args.server_pure else \ # "pca_niid_p_{}_{}_server_R{}".format(args.mode, args.attackers_num, round_no) # ) for ww_id, ww_model in workers_model.items(): utils.save_model( ww_model.state_dict(), "{}/{}/workers_p_R{}".format(args.log_dir, "models", round_no) \ if args.server_pure else \ "{}/{}/workers_np_R{}".format(args.log_dir, "models", round_no), "{}_model".format(ww_id) ) if args.neptune_log: neptune.log_metric("train_loss", train_loss) print() logging.info('Test Average loss: {:.4f}, Accuracy: {:.0f}%'.format( test_loss, test_acc)) print() t1.set_postfix(test_acc=test_acc, test_loss=test_loss) t1.update() return round_end
class FederatedLearning(): # Initializing variables # batch_size, test_batch_size, lr, wieght_decay, momentum, def __init__(self, neptune_enable, log_enable, log_interval, output_dir, random_seed): logging.info("Initializing Federated Learning class...") self.hook = sy.TorchHook(torch) use_cuda = False self.kwargs = { 'num_workers': 1, 'pin_memory': True } if use_cuda else {} self.device = torch.device("cuda" if use_cuda else "cpu") torch.manual_seed(random_seed) self.workers = dict() # self.workers_model = dict() # self.server = None # self.server_model = None # self.batch_size = batch_size # self.test_batch_size = test_batch_size # self.lr = lr # self.momentum = momentum # self.log_interval = log_interval # self.weight_decay = wieght_decay self.seed = random_seed self.log_enable = log_enable self.neptune_enable = neptune_enable self.log_file_path = output_dir def create_workers(self, workers_id_list): logging.info("Creating workers...") for worker_id in workers_id_list: if worker_id not in self.workers: logging.debug("Creating the worker: {}".format(worker_id)) self.workers[worker_id] = sy.VirtualWorker(self.hook, id=worker_id) else: logging.debug( "Worker {} exists. Skip creating this worker".format( worker_id)) # def create_server(self): # logging.info("Creating the server...") # self.server = sy.VirtualWorker(self.hook, id="server") def create_server_model(self): logging.info("Creating a model for the server...") self.server_model = FLNet().to(self.device) def create_model(self): logging.info("Creating a model...") return FLNet().to(self.device) def create_workers_model(self, selected_workers_id): logging.info("Creating a model for {} worker(s)...".format( len(selected_workers_id))) for worker_id in selected_workers_id: if worker_id not in self.workers_model: logging.debug( "Creating a (copy) model of server for worker {}".format( worker_id)) self.workers_model[worker_id] = deepcopy(self.server_model) else: logging.debug( "The model for worker {} exists".format(worker_id)) ############################ MNIST RELATED FUNCS ############################### def create_federated_mnist(self, dataset, destination_idx, batch_size, shuffle): """ Args: dataset (FLCustomDataset): Dataset to be federated destination_idx (list[str]): Path to the config file Returns: Obj: Corresponding python object """ workers = [] if "server" in destination_idx: workers.append(self.server) else: for worker_id, worker in self.workers.items(): worker_id in destination_idx and workers.append(worker) fed_dataloader = sy.FederatedDataLoader(dataset.federate(workers), batch_size=batch_size, shuffle=shuffle, drop_last=True) return fed_dataloader def create_mnist_fed_datasets(self, raw_dataset): """ raw_datasets (dict) ex. data: raw_datasets['worker_1']['x'] label: raw_datasets['worker_1']['y'] """ fed_datasets = dict() for ww_id, ww_data in raw_dataset.items(): images = tensor(ww_data['x'], dtype=float32) labels = tensor(ww_data['y'].ravel(), dtype=int64) dataset = sy.BaseDataset(images, labels, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (ww_data['x'].mean(), ), (ww_data['x'].std(), )) ])).federate([self.workers[ww_id]]) fed_datasets[ww_id] = dataset return fed_datasets ############################ FEMNIST RELATED FUNCS ############################### def create_femnist_dataset(self, raw_data, workers_idx, shuffle=True, drop_last=True): """ Args: raw_data (dict of str): dict contains processed train and test data categorized based on user id # raw_data['f0_12345']['x'], raw_data['f0_12345']['y'] Returns: Dataloader for the server """ logging.info("Creating 1 test dataset from {} workers".format( len(workers_idx))) # raw_data = utils.extract_data(raw_data, workers_idx) server_images = np.array([], dtype=np.float32).reshape(-1, 28, 28) server_labels = np.array([], dtype=np.int64) for worker_id in workers_idx: images = np.array(raw_data[worker_id]['x'], dtype=np.float32).reshape(-1, 28, 28) labels = np.array(raw_data[worker_id]['x'], dtype=np.int64).ravel() server_images = np.concatenate((server_images, images)) server_labels = np.concatenate((server_labels, labels)) test_dataset = FLCustomDataset(server_images, server_labels, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (server_images.mean(), ), (server_images.std(), )) ])) return test_dataset def create_femnist_fed_dataset(self, raw_data, workers_idx, percentage): """ Assume this only used for preparing aggregated dataset for the server Args: raw_data (dict): workers_idx (list(int)): percentage (float): Out of 100, amount of public data of each user Returns: """ logging.info( "Creating the dataset from {}% of {} selected users' data...". format(percentage, len(workers_idx))) # Fraction of public data of each user, which be shared by the server server_images = tensor([], dtype=float32).view(-1, 28, 28) server_labels = tensor([], dtype=int64) # server_images = np.array([], dtype = np.float32).reshape(-1, 28, 28) # server_labels = np.array([], dtype = np.int64) for worker_id in workers_idx: worker_samples_num = len(raw_data[worker_id]['y']) num_samples_for_server = math.floor( (percentage / 100.0) * worker_samples_num) logging.debug( "Sending {} samples from worker {} with total {}".format( num_samples_for_server, worker_id, worker_samples_num)) indices = sample(range(worker_samples_num), num_samples_for_server) images = tensor([raw_data[worker_id]['x'][i] for i in indices], dtype=float32).view(-1, 28, 28) labels = tensor([raw_data[worker_id]['y'][i] for i in indices], dtype=int64).view(-1) server_images = cat((server_images, images)) server_labels = cat((server_labels, labels)) logging.info( "Selected {} samples in total for the server from {} users.". format(server_images.shape, len(workers_idx))) return sy.BaseDataset(server_images, server_labels, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (server_images.mean().item(), ), (server_images.std().item(), )) ])).federate([self.server]) def create_femnist_fed_datasets(self, raw_dataset, workers_idx): fed_datasets = dict() for worker_id in workers_idx: images = tensor(raw_dataset[worker_id]['x'], dtype=float32) labels = tensor(raw_dataset[worker_id]['y'].ravel(), dtype=int64) dataset = sy.BaseDataset( images, labels, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (raw_dataset[worker_id]['x'].mean(), ), (raw_dataset[worker_id]['x'].std(), )) ])).federate([self.workers[worker_id]]) fed_datasets[worker_id] = dataset return fed_datasets def create_femnist_datasets(self, raw_dataset, workers_idx): datasets = dict() for worker_id in workers_idx: images = tensor(raw_dataset[worker_id]['x'], dtype=float32) labels = tensor(raw_dataset[worker_id]['y'].ravel(), dtype=int64) dataset = sy.BaseDataset( images, labels, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (raw_dataset[worker_id]['x'].mean(), ), (raw_dataset[worker_id]['x'].std(), )) ])) datasets[worker_id] = dataset return datasets ############################ GENERAL FUNC ################################ def send_model(self, model, location, location_id): if isinstance(model, dict): for ww_id, ww in model.items(): if ww.location is None: model.send(location) elif ww.location.id != location_id: model.move(location) elif model.location is None: model.send(location) elif model.location.id != location_id: model.move(location) def getback_model(self, model, selected_client_ids=None): if isinstance(model, dict): if selected_client_ids is not None: for ww_id in selected_client_ids: if model[ww_id].location is not None: model[ww_id].get() else: for ww_id, ww in model.items(): if ww.location is not None: ww.get() elif model.location is not None: model.get() def train_server(self, server_dataloader, round_no, epochs_num): self.send_model(self.server_model, self.server, "server") server_opt = optim.SGD(self.server_model.parameters(), lr=self.lr, weight_decay=self.weight_decay) for epoch_no in range(epochs_num): for batch_idx, (data, target) in enumerate(server_dataloader): self.server_model.train() data, target = data.to(self.device), target.to(self.device) server_opt.zero_grad() output = self.server_model(data) loss = F.nll_loss(output, target) loss.backward() server_opt.step() if batch_idx % self.log_interval == 0: loss = loss.get() if self.neptune_enable: neptune.log_metric('train_w0_loss', loss) if self.log_enable: file = open(self.log_file_path + "server_train", "a") TO_FILE = '{} {} {} [server] {}\n'.format( round_no, epoch_no, batch_idx, loss) file.write(TO_FILE) file.close() logging.info( 'Train Round: {}, Epoch: {} [server] [{}: {}/{} ({:.0f}%)]\tLoss: {:.6f}' .format( round_no, epoch_no, batch_idx, batch_idx * server_dataloader.batch_size, len(server_dataloader) * server_dataloader.batch_size, 100. * batch_idx / len(server_dataloader), loss.item())) # Always need to get back the model # self.getback_model(self.server_model) print() def train_workers(self, federated_train_loader, workers_model, round_no, epochs_num): workers_opt = {} for ww_id, ww_model in workers_model.items(): if ww_model.location is None \ or ww_model.location.id != ww_id: ww_model.send(self.workers[ww_id]) workers_opt[ww_id] = optim.SGD(params=ww_model.parameters(), lr=self.lr, weight_decay=self.weight_decay) for epoch_no in range(epochs_num): for ww_id, fed_dataloader in federated_train_loader.items(): if ww_id in workers_model.keys(): for batch_idx, (data, target) in enumerate(fed_dataloader): worker_id = data.location.id worker_opt = workers_opt[worker_id] workers_model[worker_id].train() data, target = data.to(self.device), target.to( self.device) worker_opt.zero_grad() output = workers_model[worker_id](data) loss = F.nll_loss(output, target) loss.backward() worker_opt.step() if batch_idx % self.log_interval == 0: loss = loss.get() if self.neptune_enable: neptune.log_metric( "train_loss_" + str(worker_id), loss) if self.log_enable: file = open( self.log_file_path + str(worker_id) + "_train", "a") TO_FILE = '{} {} {} {} {}\n'.format( round_no, epoch_no, batch_idx, worker_id, loss) file.write(TO_FILE) file.close() logging.info( 'Train Round: {}, Epoch: {} [{}] [{}: {}/{} ({:.0f}%)]\tLoss: {:.6f}' .format( round_no, epoch_no, worker_id, batch_idx, batch_idx * fed_dataloader.batch_size, len(fed_dataloader) * fed_dataloader.batch_size, 100. * batch_idx / len(fed_dataloader), loss.item())) print() def save_workers_model(self, workers_idx, round_no): self.getback_model(self.workers_model, workers_idx) logging.info("Saving models {}".format(workers_idx)) for worker_id, worker_model in self.workers_model.items(): if worker_id in workers_idx: self.save_model(worker_model, "R{}_{}".format(round_no, worker_id)) def save_model(self, model, name): parent_dir = "{}{}".format(self.log_file_path, "models") if not os.path.isdir(parent_dir): logging.debug("Create a directory for model(s).") os.mkdir(parent_dir) full_path = "{}/{}".format(parent_dir, name) logging.debug("Saving the model into " + full_path) torch.save(model, full_path) def test(self, model, test_loader, worker_id, round_no): self.getback_model(model) model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(self.device), target.to( self.device, dtype=torch.int64) output = model(data) test_loss += F.nll_loss( output, target, reduction='sum').item() # sum up batch loss pred = output.argmax( 1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_acc = 100. * correct / len(test_loader.dataset) if self.neptune_enable: neptune.log_metric("test_loss_" + str(worker_id), test_loss) neptune.log_metric("test_acc_" + str(worker_id), test_acc) if self.log_enable: file = open(self.log_file_path + str(worker_id) + "_test", "a") TO_FILE = '{} {} "{{/*Accuracy:}}\\n{}%" {}\n'.format( round_no, test_loss, test_acc, test_acc) file.write(TO_FILE) file.close() logging.info( 'Test Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), test_acc)) return test_acc def wieghted_avg_model(self, W, workers_model): self.getback_model(workers_model) tmp_model = FLNet().to(self.device) with torch.no_grad(): tmp_model.conv1.weight.data.fill_(0) tmp_model.conv1.bias.data.fill_(0) tmp_model.conv2.weight.data.fill_(0) tmp_model.conv2.bias.data.fill_(0) tmp_model.fc1.weight.data.fill_(0) tmp_model.fc1.bias.data.fill_(0) tmp_model.fc2.weight.data.fill_(0) tmp_model.fc2.bias.data.fill_(0) for counter, (ww_id, worker_model) in enumerate(workers_model.items()): tmp_model.conv1.weight.data = ( tmp_model.conv1.weight.data + W[counter] * worker_model.conv1.weight.data) tmp_model.conv1.bias.data = ( tmp_model.conv1.bias.data + W[counter] * worker_model.conv1.bias.data) tmp_model.conv2.weight.data = ( tmp_model.conv2.weight.data + W[counter] * worker_model.conv2.weight.data) tmp_model.conv2.bias.data = ( tmp_model.conv2.bias.data + W[counter] * worker_model.conv2.bias.data) tmp_model.fc1.weight.data = ( tmp_model.fc1.weight.data + W[counter] * worker_model.fc1.weight.data) tmp_model.fc1.bias.data = ( tmp_model.fc1.bias.data + W[counter] * worker_model.fc1.bias.data) tmp_model.fc2.weight.data = ( tmp_model.fc2.weight.data + W[counter] * worker_model.fc2.weight.data) tmp_model.fc2.bias.data = ( tmp_model.fc2.bias.data + W[counter] * worker_model.fc2.bias.data) return tmp_model def update_models(self, workers_idx, weighted_avg_model): self.getback_model(weighted_avg_model) with torch.no_grad(): for worker_id in workers_idx: model = None if worker_id == "server": self.getback_model(self.server_model) self.server_model.conv1.weight.set_( weighted_avg_model.conv1.weight.data) self.server_model.conv1.bias.set_( weighted_avg_model.conv1.bias.data) self.server_model.conv2.weight.set_( weighted_avg_model.conv2.weight.data) self.server_model.conv2.bias.set_( weighted_avg_model.conv2.bias.data) self.server_model.fc1.weight.set_( weighted_avg_model.fc1.weight.data) self.server_model.fc1.bias.set_( weighted_avg_model.fc1.bias.data) self.server_model.fc2.weight.set_( weighted_avg_model.fc2.weight.data) self.server_model.fc2.bias.set_( weighted_avg_model.fc2.bias.data) else: self.getback_model(self.workers_model[worker_id]) self.workers_model[worker_id].conv1.weight.set_( weighted_avg_model.conv1.weight.data) self.workers_model[worker_id].conv1.bias.set_( weighted_avg_model.conv1.bias.data) self.workers_model[worker_id].conv2.weight.set_( weighted_avg_model.conv2.weight.data) self.workers_model[worker_id].conv2.bias.set_( weighted_avg_model.conv2.bias.data) self.workers_model[worker_id].fc1.weight.set_( weighted_avg_model.fc1.weight.data) self.workers_model[worker_id].fc1.bias.set_( weighted_avg_model.fc1.bias.data) self.workers_model[worker_id].fc2.weight.set_( weighted_avg_model.fc2.weight.data) self.workers_model[worker_id].fc2.bias.set_( weighted_avg_model.fc2.bias.data) def normalize_weights(self, list_of_ids, **kwargs): self.getback_model(self.workers_model, list_of_ids) w0_model = None for model_id in kwargs: if model_id == "w0_model": w0_model = kwargs[model_id] workers_params = {} for worker_id in list_of_ids: worker_model = self.workers_model[worker_id] self.getback_model(worker_model) workers_params[worker_id] = [[] for i in range(8)] for layer_id, param in enumerate(worker_model.parameters()): workers_params[worker_id][layer_id] = param.data.numpy( ).reshape(-1, 1) if w0_model is not None: workers_params['w0_model'] = [[] for i in range(8)] for layer_id, param in enumerate(w0_model.parameters()): workers_params['w0_model'][layer_id] = param.data.numpy( ).reshape(-1, 1) workers_all_params = [] for ii in range(8): workers_all_params.append( np.array([]).reshape( workers_params[list_of_ids[0]][ii].shape[0], 0)) logging.debug("all_dparams: {}".format( workers_all_params[ii].shape)) for worker_id, worker_model in workers_params.items(): workers_all_params[0] = np.concatenate( (workers_all_params[0], workers_params[worker_id][0]), 1) workers_all_params[1] = np.concatenate( (workers_all_params[1], workers_params[worker_id][1]), 1) workers_all_params[2] = np.concatenate( (workers_all_params[2], workers_params[worker_id][2]), 1) workers_all_params[3] = np.concatenate( (workers_all_params[3], workers_params[worker_id][3]), 1) workers_all_params[4] = np.concatenate( (workers_all_params[4], workers_params[worker_id][4]), 1) workers_all_params[5] = np.concatenate( (workers_all_params[5], workers_params[worker_id][5]), 1) workers_all_params[6] = np.concatenate( (workers_all_params[6], workers_params[worker_id][6]), 1) workers_all_params[7] = np.concatenate( (workers_all_params[7], workers_params[worker_id][7]), 1) normalized_workers_all_params = [] for ii in range(len(workers_all_params)): norm = MinMaxScaler().fit(workers_all_params[ii]) normalized_workers_all_params.append( norm.transform(workers_all_params[ii])) return normalized_workers_all_params def find_best_weights(self, referenced_model, workers_to_be_used): # last column of normalized_weights is corresponding to the w0_model: normalized_weights = self.normalize_weights(workers_to_be_used, w0_model=referenced_model) reference_layer = [] workers_all_params = [] for ii in range(len(normalized_weights)): reference_layer.append(normalized_weights[ii][:, -1].reshape(-1, 1)) workers_all_params.append( normalized_weights[ii][:, :normalized_weights[ii].shape[1] - 1]) reference_layers = [] for ii in range(len(reference_layer)): tmp = np.array([]).reshape(reference_layer[ii].shape[0], 0) for jj in range(len(workers_to_be_used)): tmp = np.concatenate((tmp, reference_layer[ii]), axis=1) reference_layers.append(tmp) W = cp.Variable(len(workers_to_be_used)) objective = cp.Minimize( cp.matmul( cp.norm2(workers_all_params[0] - reference_layers[0], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[1] - reference_layers[1], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[2] - reference_layers[2], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[3] - reference_layers[3], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[4] - reference_layers[4], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[5] - reference_layers[5], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[6] - reference_layers[6], axis=0), W) + cp.matmul( cp.norm2(workers_all_params[7] - reference_layers[7], axis=0), W)) # for i in range(len(workers_all_params)): # logging.debug("Mean [{}]: {}".format(i, np.round(np.mean(workers_all_params[i],0) - np.mean(reference_layers[i],0),6))) # logging.debug("") constraints = [0 <= W, W <= 1, sum(W) == 1] prob = cp.Problem(objective, constraints) result = prob.solve(solver=cp.MOSEK) logging.info(W.value) logging.info("") if self.log_enable: file = open(self.log_file_path + "opt_weights", "a") TO_FILE = '{}\n'.format(np.array2string(W.value).replace('\n', '')) file.write(TO_FILE) file.close() return W.value ######################################################################## ##################### Trusted Users #################################### def get_average_param(self, all_params, indexes): """ Find the average of all parameters of all layers of given workers Args: Returns: """ logging.info("Finding an average model for {} workers.".format( len(indexes))) avg_param = [] for ii in range(len(all_params)): params = np.transpose( np.array([all_params[ii][:, i] for i in indexes])) logging.debug("params[{}] shape: {}".format(ii, params.shape)) avg_param.append(params.mean(axis=1)) return avg_param def get_index_number(self, workers_idx, selected_idx): positions = [] for ii, jj in enumerate(workers_idx): if jj in selected_idx: positions.append(ii) return positions def find_best_weights_from_trusted_idx_normalized_last_layer( self, workers_idx, trusted_idx): """ Args: workers_idx (list[str]) trusted_idx (list[str]) """ trusted_workers_position = self.get_index_number( workers_idx, trusted_idx) all_params = self.normalize_weights(workers_idx) """ len(all_params) = 8 all_params[0].shape = (num of elements in layer 0 of cnn, num of users) all_params[1].shape = (num of elements in layer 1 of cnn, num of users) """ avg_param = self.get_average_param(all_params, trusted_workers_position) # Not trusted users (i.e. Normal users + attackers) workers_to_be_used = list(set(workers_idx) - set(trusted_idx)) workers_to_be_used_position = self.get_index_number( workers_idx, workers_to_be_used) workers_all_params = [] for ii in range(len(all_params)): workers_all_params.append( np.transpose( np.array([ all_params[ii][:, i] for i in workers_to_be_used_position ]))) W = cp.Variable(len(workers_to_be_used)) objective = cp.Minimize( cp.norm2(cp.matmul(workers_all_params[7], W) - avg_param[7])) constraints = [0 <= W, W <= 1, sum(W) == 1] prob = cp.Problem(objective, constraints) result = prob.solve(solver=cp.MOSEK) logging.info(W.value) logging.info("") if self.log_enable: file = open(self.log_file_path + "opt_weights", "a") TO_FILE = '{}\n'.format(np.array2string(W.value).replace('\n', '')) file.write(TO_FILE) file.close() return W.value def get_average_model(self, workers_idx): """ Find the average of all parameters of all layers of given workers. The average for each layer is stored as an element of a list. Args: workers_idx (list[str]): List of workers ids Returns: """ logging.info("Finding an average model for {} workers.".format( len(workers_idx))) tmp_model = FLNet().to(self.device) self.getback_model(self.workers_model, workers_idx) with torch.no_grad(): for id_, ww_id in enumerate(workers_idx): worker_model = self.workers_model[ww_id] if id_ == 0: tmp_model.conv1.weight.set_(worker_model.conv1.weight.data) tmp_model.conv1.bias.set_(worker_model.conv1.bias.data) tmp_model.conv2.weight.set_(worker_model.conv2.weight.data) tmp_model.conv2.bias.set_(worker_model.conv2.bias.data) tmp_model.fc1.weight.set_(worker_model.fc1.weight.data) tmp_model.fc1.bias.set_(worker_model.fc1.bias.data) tmp_model.fc2.weight.set_(worker_model.fc2.weight.data) tmp_model.fc2.bias.set_(worker_model.fc2.bias.data) else: tmp_model.conv1.weight.set_(tmp_model.conv1.weight.data + worker_model.conv1.weight.data) tmp_model.conv1.bias.set_(tmp_model.conv1.bias.data + worker_model.conv1.bias.data) tmp_model.conv2.weight.set_(tmp_model.conv2.weight.data + worker_model.conv2.weight.data) tmp_model.conv2.bias.set_(tmp_model.conv2.bias.data + worker_model.conv2.bias.data) tmp_model.fc1.weight.set_(tmp_model.fc1.weight.data + worker_model.fc1.weight.data) tmp_model.fc1.bias.set_(tmp_model.fc1.bias.data + worker_model.fc1.bias.data) tmp_model.fc2.weight.set_(tmp_model.fc2.weight.data + worker_model.fc2.weight.data) tmp_model.fc2.bias.set_(tmp_model.fc2.bias.data + worker_model.fc2.bias.data) for param in tmp_model.parameters(): param.data = param.data / len(workers_idx) return tmp_model