Esempio n. 1
0
def get_composite_chain():
    chain = TsForecastingChain()
    node_trend = PrimaryNode('trend_data_model')
    node_model_trend = SecondaryNode('linear', nodes_from=[node_trend])

    node_residual = PrimaryNode('residual_data_model')
    node_model_residual = SecondaryNode('linear', nodes_from=[node_residual])

    node_final = SecondaryNode(
        'linear', nodes_from=[node_model_residual, node_model_trend])
    chain.add_node(node_final)
    return chain
Esempio n. 2
0
def run_onestep_linear_example(n_steps=1000, is_visualise: bool = True):
    window_size = 16

    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=1,
                                           max_window_size=window_size,
                                           with_exog=True)
    # regression forecasting
    chain = TsForecastingChain(PrimaryNode('linear'))

    # one step regression
    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Linear model, {dataset.task.task_params.forecast_length} step prediction with exog'
    )

    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=1,
                                           max_window_size=window_size,
                                           with_exog=False)

    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Linear model, {dataset.task.task_params.forecast_length} step prediction without exog'
    )
Esempio n. 3
0
def run_multistep_composite_example(n_steps=20000, is_visualise: bool = True):
    # composite forecasting with ensemble
    node_first = PrimaryNode('linear')
    node_second = PrimaryNode('ridge')
    node_final = SecondaryNode('linear', nodes_from=[node_first, node_second])

    chain = TsForecastingChain(node_final)

    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=64,
                                           max_window_size=512,
                                           with_exog=False)

    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Composite model, {dataset.task.task_params.forecast_length} step prediction without exog'
    )

    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=64,
                                           max_window_size=64,
                                           with_exog=True)

    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Composite model, {dataset.task.task_params.forecast_length} step prediction with exog'
    )
Esempio n. 4
0
def run_multistep_custom_example(n_steps=6, is_visualise: bool = True):
    chain = TsForecastingChain(PrimaryNode('ridge'))

    dataset = get_synthetic_ts_data_custom(n_steps=n_steps,
                                           forecast_length=2,
                                           max_window_size=2,
                                           with_exog=False)
    # multi step regression
    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Linear model, {dataset.task.task_params.forecast_length} step prediction without exog'
    )

    dataset = get_synthetic_ts_data_custom(n_steps=n_steps,
                                           forecast_length=2,
                                           max_window_size=2,
                                           with_exog=True)
    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Linear model, {dataset.task.task_params.forecast_length} step prediction with exog'
    )
Esempio n. 5
0
def run_forecasting(chain: TsForecastingChain, data: InputData,
                    is_visualise: bool, desc: str):
    train_data, test_data = train_test_data_setup(data,
                                                  shuffle_flag=False,
                                                  split_ratio=0.9)
    data.task.task_params.make_future_prediction = True
    chain.fit_from_scratch(train_data)

    test_data_for_pred = copy(test_data)
    # to avoid data leak
    test_data_for_pred.target = None
    data.task.task_params.make_future_prediction = True

    full_prediction = chain.forecast(
        initial_data=train_data, supplementary_data=test_data_for_pred).predict
    if is_visualise:
        plot_prediction(full_prediction, test_data, desc)
Esempio n. 6
0
def run_metocean_forecasting_problem(train_file_path,
                                     test_file_path,
                                     forecast_length=1,
                                     max_window_size=32,
                                     is_visualise=False):
    # specify the task to solve
    task_to_solve = Task(
        TaskTypesEnum.ts_forecasting,
        TsForecastingParams(forecast_length=forecast_length,
                            max_window_size=max_window_size))

    full_path_train = os.path.join(str(project_root()), train_file_path)
    dataset_to_train = InputData.from_csv(full_path_train,
                                          task=task_to_solve,
                                          data_type=DataTypesEnum.ts)

    # a dataset for a final validation of the composed model
    full_path_test = os.path.join(str(project_root()), test_file_path)
    dataset_to_validate = InputData.from_csv(full_path_test,
                                             task=task_to_solve,
                                             data_type=DataTypesEnum.ts)

    chain_simple = TsForecastingChain(PrimaryNode('linear'))
    chain_simple.fit(input_data=dataset_to_train, verbose=False)
    rmse_on_valid_simple = calculate_validation_metric(
        chain_simple.predict(dataset_to_validate),
        dataset_to_validate,
        f'full-simple_{forecast_length}',
        is_visualise=is_visualise)
    print(f'RMSE simple: {rmse_on_valid_simple}')

    chain_composite_lstm = get_composite_chain()
    chain_composite_lstm.fit(input_data=dataset_to_train, verbose=False)
    rmse_on_valid_lstm_only = calculate_validation_metric(
        chain_composite_lstm.predict(dataset_to_validate),
        dataset_to_validate,
        f'full-lstm-only_{forecast_length}',
        is_visualise=is_visualise)
    print(f'RMSE LSTM composite: {rmse_on_valid_lstm_only}')

    return rmse_on_valid_simple
Esempio n. 7
0
def test_ts_single_chain_model_without_multiotput_support():
    time_series = generate_synthetic_data(10)
    len_forecast = 2
    train_part = time_series[:-len_forecast]
    test_part = time_series[-len_forecast:]

    task = Task(
        TaskTypesEnum.ts_forecasting,
        TsForecastingParams(forecast_length=len_forecast,
                            max_window_size=2,
                            return_all_steps=False,
                            make_future_prediction=True))

    train_data = InputData(idx=np.arange(0, len(train_part)),
                           features=None,
                           target=train_part,
                           task=task,
                           data_type=DataTypesEnum.ts)

    for model_id in ['xgbreg', 'gbr', 'adareg', 'svr', 'sgdr']:
        chain = TsForecastingChain(PrimaryNode(model_id))

        # making predictions for the missing part in the time series
        chain.fit_from_scratch(train_data)

        # data for making prediction for a specific length
        test_data = InputData(idx=np.arange(0, len_forecast),
                              features=None,
                              target=None,
                              task=task,
                              data_type=DataTypesEnum.ts)

        predicted_values = chain.forecast(initial_data=train_data,
                                          supplementary_data=test_data).predict

        mae = mean_absolute_error(test_part, predicted_values)
        assert mae < 50
Esempio n. 8
0
def run_multistep_lstm_example(n_steps=6000, is_visualise: bool = True):
    # lstm forecasting
    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=64,
                                           max_window_size=64,
                                           with_exog=False)

    chain = TsForecastingChain(PrimaryNode('lstm'))
    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'LSTM model, {dataset.task.task_params.forecast_length} step prediction with exog'
    )

    return True
Esempio n. 9
0
def test_gapfilling_forward_ridge_correct():
    arr_with_gaps, real_values = get_array_with_gaps()

    # Find all gap indices in the array
    id_gaps = np.ravel(np.argwhere(arr_with_gaps == -100.0))

    ridge_chain = TsForecastingChain(PrimaryNode('ridge'))
    gapfiller = ModelGapFiller(gap_value=-100.0, chain=ridge_chain,
                               max_window_size=150)
    without_gap = gapfiller.forward_filling(arr_with_gaps)

    # Get only values in the gaps
    predicted_values = without_gap[id_gaps]
    true_values = real_values[id_gaps]

    rmse_test = mean_squared_error(true_values, predicted_values, squared=False)

    # The RMSE must be less than the standard deviation of random noise * 2.0
    assert rmse_test < 0.2
Esempio n. 10
0
def run_gapfilling_example():
    """
    This function runs an example of filling in gaps in synthetic data

    :return arrays_dict: dictionary with 4 keys ('ridge', 'local_poly',
    'batch_poly', 'linear') that can be used to get arrays without gaps
    :return gap_data: an array with gaps
    :return real_data: an array with actual values in gaps
    """

    # Get synthetic time series
    gap_data, real_data = get_array_with_gaps()

    # Filling in gaps using chain from FEDOT
    ridge_chain = TsForecastingChain(PrimaryNode('ridge'))
    ridge_gapfiller = ModelGapFiller(gap_value=-100.0,
                                     chain=ridge_chain,
                                     max_window_size=150)
    without_gap_arr_ridge = \
        ridge_gapfiller.forward_inverse_filling(gap_data)

    # Filling in gaps using simple methods such as polynomial approximation
    simple_gapfill = SimpleGapFiller(gap_value=-100.0)
    without_gap_local_poly = \
        simple_gapfill.local_poly_approximation(gap_data, 4, 150)

    without_gap_batch_poly = \
        simple_gapfill.batch_poly_approximation(gap_data, 4, 150)

    without_gap_linear = \
        simple_gapfill.linear_interpolation(gap_data)

    arrays_dict = {
        'ridge': without_gap_arr_ridge,
        'local_poly': without_gap_local_poly,
        'batch_poly': without_gap_batch_poly,
        'linear': without_gap_linear
    }
    return arrays_dict, gap_data, real_data
Esempio n. 11
0
def run_multistep_multiscale_example(n_steps=10000, is_visualise: bool = True):
    dataset = get_synthetic_ts_data_period(n_steps=n_steps,
                                           forecast_length=64,
                                           max_window_size=512,
                                           with_exog=False)

    # composite forecasting with decomposition
    node_first = PrimaryNode('trend_data_model')
    node_second = PrimaryNode('residual_data_model')
    node_trend_model = SecondaryNode('ridge', nodes_from=[node_first])
    node_residual_model = SecondaryNode('linear', nodes_from=[node_second])

    node_final = SecondaryNode(
        'linear', nodes_from=[node_trend_model, node_residual_model])

    chain = TsForecastingChain(node_final)

    run_forecasting(
        chain=chain,
        data=dataset,
        is_visualise=is_visualise,
        desc=
        f'Multiscale model, {dataset.task.task_params.forecast_length} step prediction withot exog'
    )
Esempio n. 12
0
    plt.legend(fontsize=15)
    plt.show()


folder_to_save = './iccs_article/fedot_composing'

if __name__ == '__main__':

    # Заполнение пропусков и проверка результатов
    for file in ['Synthetic.csv', 'Sea_hour.csv', 'Sea_10_240.csv']:
        print(file)
        data = pd.read_csv(f'./data/{file}')
        data['Date'] = pd.to_datetime(data['Date'])
        dataframe = data.copy()

        chain = TsForecastingChain()
        node_trend = PrimaryNode('trend_data_model')
        node_trend.labels = ["fixed"]
        node_lstm_trend = SecondaryNode('linear', nodes_from=[node_trend])
        node_trend.labels = ["fixed"]
        node_residual = PrimaryNode('residual_data_model')
        node_ridge_residual = SecondaryNode('linear',
                                            nodes_from=[node_residual])

        node_final = SecondaryNode(
            'linear', nodes_from=[node_ridge_residual, node_lstm_trend])
        node_final.labels = ["fixed"]
        chain.add_node(node_final)
        print(f'Размер исходной цепочки {len(chain.nodes)}')

        # Заполнение пропусков
Esempio n. 13
0
def forecasting_accuracy(path, prediction_len, vis=True):
    mapes_per_model = []
    models = []
    files = []

    for file_name in ['Synthetic.csv', 'Sea_hour.csv', 'Sea_10_240.csv']:
        # Исходный файл с пропусками
        gap_path = os.path.join(path, file_name)
        gap_df = pd.read_csv(gap_path)
        gap_df['Date'] = pd.to_datetime(gap_df['Date'])

        # Простые методы
        linear_path = os.path.join(os.path.join(path, 'linear'), file_name)
        linear_df = pd.read_csv(linear_path)
        local_poly_path = os.path.join(os.path.join(path, 'poly'), file_name)
        local_poly_df = pd.read_csv(local_poly_path)
        batch_poly_path = os.path.join(os.path.join(path, 'batch_poly'), file_name)
        batch_poly_df = pd.read_csv(batch_poly_path)

        # Методы восстановления пропусков средствами языка R
        kalman_path = os.path.join(os.path.join(path, 'kalman'), file_name)
        kalman_df = pd.read_csv(kalman_path)
        ma_path = os.path.join(os.path.join(path, 'ma'), file_name)
        ma_df = pd.read_csv(ma_path)
        spline_path = os.path.join(os.path.join(path, 'spline'), file_name)
        spline_df = pd.read_csv(spline_path)

        # Методы восстановления пропусков FEDOT
        fedot_ridge_30_path = os.path.join(os.path.join(path, 'fedot_ridge_30'), file_name)
        fedot_ridge_30_df = pd.read_csv(fedot_ridge_30_path)
        fedot_ridge_100_path = os.path.join(os.path.join(path, 'fedot_ridge_100'), file_name)
        fedot_ridge_100_df = pd.read_csv(fedot_ridge_100_path)
        fedot_compose = os.path.join(os.path.join(path, 'fedot_composing'), file_name)
        fedot_compose_df = pd.read_csv(fedot_compose)

        # Исходный временной ряд без пропусков
        arr_parameter = np.array(gap_df['Height'])
        # Временной ряд с пропусками
        arr_mask = np.array(gap_df['gap'])
        ids_gaps = np.ravel(np.argwhere(arr_mask == -100.0))

        array_gaps = np.ma.masked_where(arr_mask == -100.0, arr_mask)

        if vis:
            plt.plot(gap_df['Date'], arr_parameter, c='red', alpha=0.2)
            for index in ids_gaps:
                plt.plot([gap_df['Date'][index], gap_df['Date'][index]], [min(arr_parameter), arr_parameter[index]],
                         c='red', alpha=0.05)
            plt.plot(gap_df['Date'], array_gaps, c='blue', alpha=1.0)
            plt.ylabel('Sea level, m', fontsize=15)
            plt.xlabel('Date', fontsize=15)
            plt.grid()
            plt.show()

        withoutgap_arr_linear = np.array(linear_df['gap'])
        withoutgap_arr_local = np.array(local_poly_df['gap'])
        withoutgap_arr_batch = np.array(batch_poly_df['gap'])

        withoutgap_arr_kalman = np.array(kalman_df['gap'])
        withoutgap_arr_ma = np.array(ma_df['gap'])
        withoutgap_arr_spline = np.array(spline_df['gap'])

        withoutgap_arr_ridge_30 = np.array(fedot_ridge_30_df['gap'])
        withoutgap_arr_ridge_100 = np.array(fedot_ridge_100_df['gap'])
        withoutgap_arr_compose = np.array(fedot_compose_df['gap'])

        if vis:
            plt.plot(gap_df['Date'], arr_parameter, c='green', alpha=0.5,
                     label='Actual values')
            plt.plot(gap_df['Date'], withoutgap_arr_linear, c='red', alpha=0.5,
                     label='Linear interpolation')
            plt.plot(gap_df['Date'], withoutgap_arr_local, c='orange', alpha=0.5,
                     label='Local polynomial approximation')
            plt.plot(gap_df['Date'], withoutgap_arr_batch, c='purple', alpha=0.5,
                     label='Batch polynomial approximation')
            plt.plot(gap_df['Date'], array_gaps, c='blue', alpha=1.0)
            plt.ylabel('Sea level, m', fontsize=15)
            plt.xlabel('Date', fontsize=15)
            plt.grid()
            plt.legend(fontsize=15)
            plt.show()

            plt.plot(gap_df['Date'], arr_parameter, c='green', alpha=0.5,
                     label='Actual values')
            plt.plot(gap_df['Date'], withoutgap_arr_kalman, c='red', alpha=0.5,
                     label='Kalman filtering')
            plt.plot(gap_df['Date'], withoutgap_arr_ma, c='orange', alpha=0.5,
                     label='Moving average')
            plt.plot(gap_df['Date'], withoutgap_arr_spline, c='purple', alpha=0.5,
                     label='Spline interpolation')
            plt.plot(gap_df['Date'], array_gaps, c='blue', alpha=1.0)
            plt.ylabel('Sea level, m', fontsize=15)
            plt.xlabel('Date', fontsize=15)
            plt.grid()
            plt.legend(fontsize=15)
            plt.show()

            plt.plot(gap_df['Date'], arr_parameter, c='green', alpha=0.5,
                     label='Actual values')
            plt.plot(gap_df['Date'], withoutgap_arr_batch, c='red',
                     alpha=0.5,
                     label='Batch polynomial approximation')
            plt.plot(gap_df['Date'], withoutgap_arr_kalman, c='orange', alpha=0.5,
                     label='Kalman filtering')
            plt.plot(gap_df['Date'], withoutgap_arr_ridge_30, c='purple', alpha=0.5,
                     label='Ridge 30 ws')
            plt.plot(gap_df['Date'], array_gaps, c='blue', alpha=1.0)
            plt.ylabel('Sea level, m', fontsize=15)
            plt.xlabel('Date', fontsize=15)
            plt.grid()
            plt.legend(fontsize=15)
            plt.show()

        train_part = arr_parameter[:-prediction_len]
        test_part = arr_parameter[-prediction_len:]

        # Подготавливаем часть временного ряда с восстановленными значениями
        train_part_linear = withoutgap_arr_linear[:-prediction_len]
        train_part_local = withoutgap_arr_local[:-prediction_len]
        train_part_batch = withoutgap_arr_batch[:-prediction_len]

        train_part_kalman = withoutgap_arr_kalman[:-prediction_len]
        train_part_ma = withoutgap_arr_ma[:-prediction_len]
        train_part_stine = withoutgap_arr_spline[:-prediction_len]

        train_part_ridge_30 = withoutgap_arr_ridge_30[:-prediction_len]
        train_part_ridge_100 = withoutgap_arr_ridge_100[:-prediction_len]
        train_part_compose = withoutgap_arr_compose[:-prediction_len]

        if file_name == 'Hour_data_m.csv':
            max_window_size = 50
        else:
            max_window_size = 500
        for sample, model in zip([train_part, train_part_linear, train_part_local, train_part_batch,
                                  train_part_kalman, train_part_ma, train_part_stine, train_part_ridge_30,
                                  train_part_ridge_100, train_part_compose],
                                 ['Original', 'Linear interpolation', 'Local polynomial approximation',
                                  'Batch polynomial approximation', 'Kalman filtering', 'Moving average',
                                  'Spline interpolation', 'Ridge forward 30 ws', 'Ridge forward 100 ws',
                                  'Chain compose']):
            node_first = PrimaryNode('ridge')
            node_second = PrimaryNode('ridge')
            node_trend_model = SecondaryNode('linear', nodes_from=[node_first])
            node_residual_model = SecondaryNode('linear', nodes_from=[node_second])

            node_final = SecondaryNode('svr', nodes_from=[node_trend_model,
                                                          node_residual_model])
            chain = TsForecastingChain(node_final)

            task = Task(TaskTypesEnum.ts_forecasting,
                        TsForecastingParams(forecast_length=prediction_len,
                                            max_window_size=max_window_size,
                                            return_all_steps=False,
                                            make_future_prediction=True))

            input_data = InputData(idx=np.arange(0, len(sample)),
                                   features=None,
                                   target=sample,
                                   task=task,
                                   data_type=DataTypesEnum.ts)

            chain.fit_from_scratch(input_data)

            # "Test data" for making prediction for a specific length
            test_data = InputData(idx=np.arange(0, prediction_len),
                                  features=None,
                                  target=None,
                                  task=task,
                                  data_type=DataTypesEnum.ts)

            predicted_values = chain.forecast(initial_data=input_data,
                                              supplementary_data=test_data).predict

            print(model)
            MAE = mean_absolute_error(test_part, predicted_values)
            print('Mean absolute error -', round(MAE, 4))

            RMSE = (mean_squared_error(test_part, predicted_values)) ** 0.5
            print('RMSE -', round(RMSE, 4))

            MedianAE = median_absolute_error(test_part, predicted_values)
            print('Median absolute error -', round(MedianAE, 4))

            mape = mean_absolute_percentage_error(test_part, predicted_values)
            print('MAPE -', round(mape, 4), '\n')

            if file_name == 'Sea_10_240.csv':
                plt.plot(gap_df['Date'], arr_parameter, c='green', alpha=0.5, label='Actual values')
                plt.plot(gap_df['Date'][:-prediction_len], sample, c='blue', label='Restored series')
                plt.plot(gap_df['Date'][-prediction_len:], predicted_values, c='red', alpha=0.5, label='Model forecast')
                plt.ylabel('Sea level, m', fontsize=15)
                plt.xlabel('Date', fontsize=15)
                plt.grid()
                plt.title(model, fontsize=15)
                plt.legend(fontsize=15)
                plt.show()

            models.append(model)
            mapes_per_model.append(mape)
            files.append(file_name)

    local_df = pd.DataFrame({'MAPE': mapes_per_model,
                             'Model': models,
                             'File': files})

    for model in local_df['Model'].unique():
        local_local_df = local_df[local_df['Model'] == model]
        mape_arr = np.array(local_local_df['MAPE'])

        print(f'Среднее значение ошибки для модели {model} - {np.mean(mape_arr)}')
        for file in local_local_df['File'].unique():
            l_local_local_df = local_local_df[local_local_df['File'] == file]
            print(f'{model}, {file}, MAPE - {float(l_local_local_df["MAPE"])}')
    plt.show()


folder_to_save = './iccs_article/fedot_ridge_two_way_80'

if __name__ == '__main__':

    # Заполнение пропусков и проверка результатов
    for file in ['Synthetic.csv', 'Sea_hour.csv', 'Sea_10_240.csv']:
        print(file)
        data = pd.read_csv(f'./data/{file}')
        data['Date'] = pd.to_datetime(data['Date'])
        dataframe = data.copy()

        # Цепочка из одной модели
        chain = TsForecastingChain(PrimaryNode('ridge'))

        # Заполнение пропусков
        gapfiller = ModelGapFiller(gap_value=-100.0, chain=chain)
        with_gap_array = np.array(data['gap'])
        withoutgap_arr = gapfiller.forward_inverse_filling(with_gap_array,
                                                           max_window_size=80)

        dataframe['gap'] = withoutgap_arr
        validate(parameter='Height',
                 mask='gap',
                 data=data,
                 withoutgap_arr=withoutgap_arr)

        save_path = os.path.join(folder_to_save, file)
        # Create folder if it doesnt exists
Esempio n. 15
0
def run_metocean_forecasting_problem(train_file_path,
                                     test_file_path,
                                     forecast_length=1,
                                     max_window_size=64,
                                     with_visualisation=True):
    # specify the task to solve
    task_to_solve = Task(
        TaskTypesEnum.ts_forecasting,
        TsForecastingParams(forecast_length=forecast_length,
                            max_window_size=max_window_size,
                            return_all_steps=False))

    full_path_train = os.path.join(str(project_root()), train_file_path)
    dataset_to_train = InputData.from_csv(full_path_train,
                                          task=task_to_solve,
                                          data_type=DataTypesEnum.ts)

    # a dataset for a final validation of the composed model
    full_path_test = os.path.join(str(project_root()), test_file_path)
    dataset_to_validate = InputData.from_csv(full_path_test,
                                             task=task_to_solve,
                                             data_type=DataTypesEnum.ts)

    metric_function = MetricsRepository().metric_by_id(
        RegressionMetricsEnum.RMSE)

    time_limit_min = 10
    available_model_types = [
        'linear', 'ridge', 'lasso', 'rfr', 'dtreg', 'knnreg', 'svr'
    ]

    if max_window_size == 1:
        # unit test model
        available_model_types = ['linear', 'ridge']
        time_limit_min = 0.001

    # each possible single-model chain
    for model in available_model_types:
        chain = TsForecastingChain(PrimaryNode(model))

        chain.fit(input_data=dataset_to_train, verbose=False)
        calculate_validation_metric(chain.predict(dataset_to_validate),
                                    dataset_to_validate,
                                    is_visualise=with_visualisation,
                                    label=model)

    # static multiscale chain
    multiscale_chain = get_composite_multiscale_chain()

    multiscale_chain.fit(input_data=dataset_to_train, verbose=False)
    calculate_validation_metric(multiscale_chain.predict(dataset_to_validate),
                                dataset_to_validate,
                                is_visualise=with_visualisation,
                                label='Fixed multiscale')

    # static all-in-one ensemble chain
    ens_chain = get_ensemble_chain()
    ens_chain.fit(input_data=dataset_to_train, verbose=False)
    calculate_validation_metric(ens_chain.predict(dataset_to_validate),
                                dataset_to_validate,
                                is_visualise=with_visualisation,
                                label='Ensemble composite')

    # optimized ensemble chain
    composer_requirements = GPComposerRequirements(
        primary=available_model_types,
        secondary=available_model_types,
        max_arity=5,
        max_depth=2,
        pop_size=10,
        num_of_generations=10,
        crossover_prob=0.8,
        mutation_prob=0.8,
        max_lead_time=datetime.timedelta(minutes=time_limit_min),
        add_single_model_chains=False)

    builder = GPComposerBuilder(task=task_to_solve).with_requirements(
        composer_requirements).with_metrics(metric_function)
    composer = builder.build()

    chain = composer.compose_chain(data=dataset_to_train, is_visualise=False)
    chain.fit_from_scratch(input_data=dataset_to_train, verbose=False)

    if with_visualisation:
        ComposerVisualiser.visualise(chain)

    calculate_validation_metric(chain.predict(dataset_to_validate),
                                dataset_to_validate,
                                is_visualise=with_visualisation,
                                label='Automated ensemble')

    # optimized multiscale chain

    available_model_types_primary = ['trend_data_model', 'residual_data_model']

    available_model_types_secondary = [
        'linear', 'ridge', 'lasso', 'rfr', 'dtreg', 'knnreg', 'svr'
    ]

    available_model_types_all = available_model_types_primary + available_model_types_secondary

    composer_requirements = GPComposerRequirements(
        primary=available_model_types_all,
        secondary=available_model_types_secondary,
        max_arity=5,
        max_depth=2,
        pop_size=10,
        num_of_generations=30,
        crossover_prob=0.8,
        mutation_prob=0.8,
        max_lead_time=datetime.timedelta(minutes=time_limit_min))

    builder = GPComposerBuilder(task=task_to_solve).with_requirements(
        composer_requirements).with_metrics(
            metric_function).with_initial_chain(multiscale_chain)
    composer = builder.build()

    chain = composer.compose_chain(data=dataset_to_train, is_visualise=False)
    chain.fit_from_scratch(input_data=dataset_to_train, verbose=False)

    if with_visualisation:
        visualiser = ChainVisualiser()
        visualiser.visualise(chain)

    rmse_on_valid = calculate_validation_metric(
        chain.predict(dataset_to_validate),
        dataset_to_validate,
        is_visualise=with_visualisation,
        label='Automated multiscale')

    return rmse_on_valid