Esempio n. 1
0
def main(_):
    model = BERT_NER(param)

    model.build(input_shape=(4, param.batch_size, param.maxlen))

    model.summary()

    # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
    writer = TFWriter(param.maxlen,
                      vocab_file,
                      data_dir=FLAGS.data_dir,
                      modes=["test"],
                      check_exist=True)

    ner_load = TFLoader(param.maxlen,
                        param.batch_size,
                        data_dir=FLAGS.data_dir)

    # Metrics
    f1score = Metric.SparseF1Score("macro", predict_sparse=True)
    precsionscore = Metric.SparsePrecisionScore("macro", predict_sparse=True)
    recallscore = Metric.SparseRecallScore("macro", predict_sparse=True)
    accuarcyscore = Metric.SparseAccuracy(predict_sparse=True)

    # 保存模型
    checkpoint = tf.train.Checkpoint(model=model)
    checkpoint.restore(tf.train.latest_checkpoint('./save'))
    # For test model
    # print(dir(checkpoint))
    Batch = 0
    f1s = []
    precisions = []
    recalls = []
    accuracys = []
    for X, token_type_id, input_mask, Y in ner_load.load_test():
        predict = model.predict([X, token_type_id, input_mask,
                                 Y])  # [batch_size, max_length,label_size]

        f1s.append(f1score(Y, predict))
        precisions.append(precsionscore(Y, predict))
        recalls.append(recallscore(Y, predict))
        accuracys.append(accuarcyscore(Y, predict))
        print("Sentence",
              writer.convert_id_to_vocab(tf.reshape(X, [-1]).numpy()))

        print("Label",
              writer.convert_id_to_label(tf.reshape(predict, [-1]).numpy()))
    print("f1:{}\tprecision:{}\trecall:{}\taccuracy:{}\n".format(
        np.mean(f1s), np.mean(precisions), np.mean(recalls),
        np.mean(accuracys)))
Esempio n. 2
0
    def predict(self, inputs, is_training=False):
        output = self(inputs, is_training=is_training)
        return output


model = BERT_NER(param)

model.build(input_shape=(3, param.batch_size, param.maxlen))

model.summary()

# 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
writer = TFWriter(param.maxlen, vocab_file,
                    modes=["valid"], check_exist=False)

ner_load = TFLoader(param.maxlen, param.batch_size, epoch=3)

# Metrics
f1score = Metric.SparseF1Score(average="macro")
precsionscore = Metric.SparsePrecisionScore(average="macro")
recallscore = Metric.SparseRecallScore(average="macro")
accuarcyscore = Metric.SparseAccuracy()

# 保存模型
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(tf.train.latest_checkpoint('./save'))
# For test model
Batch = 0
f1s = []
precisions = []
recalls = []
Esempio n. 3
0
maxlen = 128
batch_size = 64
embedding_dims = 100
vocab_file = "Input/vocab.txt"
word2vec = "./corpus/word2vec.vector"
class_num = 2
vocab_size = 30522  # line in vocab.txt

# 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
writer = TFWriter(maxlen,
                  vocab_file,
                  modes=["train"],
                  task='cls',
                  check_exist=False)

load = TFLoader(maxlen, batch_size, task='cls', epoch=3)

# init_weights = writer.get_init_weight(word2vec,
#                                       vocab_size,
#                                       embedding_dims)

model = TextCNN.TextCNN(
    maxlen,
    vocab_size,
    embedding_dims,
    class_num,
    # init_weights,
    weights_trainable=True)

# model = TextCNN.TextCNN(maxlen, vocab_size, embedding_dims, class_num)
#
# # 构建损失函数
# mask_sparse_categotical_loss = Losess.MaskSparseCategoricalCrossentropy(from_logits=False,use_mask=True)
mask_sparse_categotical_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
# # 初始化参数
bert_init_weights_from_checkpoint(model,
                                  model_path,
                                  param.num_hidden_layers,
                                  pooler=True)

# 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
writer = TFWriter(param.maxlen, vocab_file,
                  modes=["train"], task='cls',
                  check_exist=True)

load = TFLoader(param.maxlen, param.batch_size, task='cls', epoch=5)

# 训练模型
# 使用tensorboard
summary_writer = tf.summary.create_file_writer("./tensorboard")

# Metrics
f1score = Metric.SparseF1Score(average="macro")
precsionscore = Metric.SparsePrecisionScore(average="macro")
recallscore = Metric.SparseRecallScore(average="macro")
accuarcyscore = Metric.SparseAccuracy()

# 保存模型
checkpoint = tf.train.Checkpoint(model=model)
manager = tf.train.CheckpointManager(checkpoint, directory="./save",
                                     checkpoint_name="model.ckpt",
Esempio n. 5
0
def main(_):
    model = BERT_NER(param)

    model.build(input_shape=(4, param.batch_size, param.maxlen))

    model.summary()

# 构建优化器

    optimizer_bert = optim.AdamWarmup(learning_rate=2e-5,  # 重要参数
                                      decay_steps=10000,  # 重要参数
                                      warmup_steps=1000, )
    optimizer_crf = optim.AdamWarmup(learning_rate=1e-3,
                                     decay_steps=10000,  # 重要参数
                                     warmup_steps=1000,
                                     )
    #
    # 初始化参数
    bert_init_weights_from_checkpoint(model,
                                      model_path,
                                      param.num_hidden_layers,
                                      pooler=False)

    # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
    writer = TFWriter(param.maxlen, vocab_file, data_dir=FLAGS.data_dir,
                      modes=["train"], check_exist=False)

    ner_load = TFLoader(param.maxlen, param.batch_size, data_dir=FLAGS.data_dir, epoch=5)

    # 训练模型
    # 使用tensorboard
    summary_writer = tf.summary.create_file_writer("./tensorboard")

    # Metrics
    f1score = Metric.SparseF1Score(average="macro", predict_sparse=True)
    precsionscore = Metric.SparsePrecisionScore(average="macro", predict_sparse=True)
    recallscore = Metric.SparseRecallScore(average="macro", predict_sparse=True)
    accuarcyscore = Metric.SparseAccuracy(predict_sparse=True)

    # 保存模型
    checkpoint = tf.train.Checkpoint(model=model)
    manager = tf.train.CheckpointManager(checkpoint, directory="./save",
                                         checkpoint_name="model.ckpt",
                                         max_to_keep=3)
    # For train model
    Batch = 0
    for X, token_type_id, input_mask, Y in ner_load.load_train():
        with tf.GradientTape(persistent=True) as tape:
            loss, predict = model([X, token_type_id, input_mask, Y])

            f1 = f1score(Y, predict)
            precision = precsionscore(Y, predict)
            recall = recallscore(Y, predict)
            accuracy = accuarcyscore(Y, predict)
            if Batch % 101 == 0:
                print("Batch:{}\tloss:{:.4f}".format(Batch, loss.numpy()))
                print("Batch:{}\tacc:{:.4f}".format(Batch, accuracy))
                print("Batch:{}\tprecision{:.4f}".format(Batch, precision))
                print("Batch:{}\trecall:{:.4f}".format(Batch, recall))
                print("Batch:{}\tf1score:{:.4f}".format(Batch, f1))

                print("Sentence", writer.convert_id_to_vocab(tf.reshape(X, [-1]).numpy()))
                print("predict", writer.convert_id_to_label(tf.reshape(predict, [-1]).numpy()))
                print("label", writer.convert_id_to_label(tf.reshape(Y, [-1]).numpy()))
                manager.save(checkpoint_number=Batch)

            with summary_writer.as_default():
                tf.summary.scalar("loss", loss, step=Batch)
                tf.summary.scalar("acc", accuracy, step=Batch)
                tf.summary.scalar("f1", f1, step=Batch)
                tf.summary.scalar("precision", precision, step=Batch)
                tf.summary.scalar("recall", recall, step=Batch)

        grads_bert = tape.gradient(loss, model.bert.variables + model.dense.variables)
        grads_crf = tape.gradient(loss, model.crf.variables)
        optimizer_bert.apply_gradients(grads_and_vars=zip(grads_bert, model.bert.variables + model.dense.variables))
        optimizer_crf.apply_gradients(grads_and_vars=zip(grads_crf, model.crf.variables))
        Batch += 1
    
    model.save("model_save")
Esempio n. 6
0
    def predict(self, inputs, is_training=False):
        output = self(inputs, is_training=is_training)
        return output


model = BERT_NER(param)

model.build(input_shape=(3, param.batch_size , param.maxlen ))

model.summary()

# 写入数据 通过check_exist=True参数控制仅在第一次调用时写入
writer = TFWriter(param.maxlen, vocab_file,
                    modes=["valid"], task='cls', check_exist=True)

load = TFLoader(param.maxlen, param.batch_size, task='cls')

# Metrics
f1score = Metric.SparseF1Score(average="macro")
precsionscore = Metric.SparsePrecisionScore(average="macro")
recallscore = Metric.SparseRecallScore(average="macro")
accuarcyscore = Metric.SparseAccuracy()

# 保存模型
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(tf.train.latest_checkpoint('./save'))
# For train model

Batch = 0
f1s = []
precisions = []