def evaluate(): """Eval FER2013 for a number of steps.""" with tf.Graph().as_default() as graph: # Get images and labels for FER2013. images, labels = fer2013.inputs(eval_data=FLAGS.eval_data, input_file=TEST_INPUT_FILE) keep_prob = 1 # Build a Graph that computes the logits predictions from the # inference model. logits = fer2013.inference(images, keep_prob, 128) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( fer2013.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, graph) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def evaluate(): """Eval FER2013 for a number of steps.""" with tf.Graph().as_default(): # Get images and labels for FER2013. eval_data = FLAGS.eval_data == 'test' print(eval_data) print("evaluating model...") images, labels = fer2013.inputs(eval_data=eval_data) # Build a Graph that computes the logits predictions from the # inference model. logits = fer2013.inference(images) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( fer2013.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() graph_def = tf.get_default_graph().as_graph_def() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, graph_def=graph_def) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def tower_loss(scope): """Calculate the total loss on a single tower running the model. Args: scope: unique prefix string identifying the tower, e.g. 'tower_0' Returns: Tensor of shape [] containing the total loss for a batch of data """ # Get images and labels images, labels = fer2013.distorted_inputs(TRAIN_INPUT_FILE) keep_prob = 0.5 # Build inference Graph. logits = fer2013.inference(images, keep_prob, FLAGS.train_batch_size) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = fer2013.loss(logits, labels) acc = fer2013.accuracy(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % fer2013.TOWER_NAME, '', l.op.name) # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(loss_name + ' (raw)', l) tf.summary.scalar(loss_name, loss_averages.average(l)) with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) return total_loss
def tower_loss(scope): """Calculate the total loss on a single tower running the CIFAR model. Args: scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0' Returns: Tensor of shape [] containing the total loss for a batch of data """ # Get images and labels for CIFAR-10. images, labels = fer2013.distorted_inputs() # Build inference Graph. logits = fer2013.inference(images) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = fer2013.loss(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % fer2013.TOWER_NAME, '', l.op.name) # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.scalar_summary(loss_name +' (raw)', l) tf.scalar_summary(loss_name, loss_averages.average(l)) with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) return total_loss
def train(): """Train FER-2013 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Get images and labels for FER2013. # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = fer2013.distorted_inputs(TRAIN_INPUT_FILE) keep_prob = 0.7 # Build a Graph that computes the logits predictions from the # inference model. logits = fer2013.inference(images, keep_prob, FLAGS.train_batch_size) # Visualize conv1 kernels with tf.variable_scope('conv1'): tf.get_variable_scope().reuse_variables() weights = tf.get_variable('weights') grid = put_kernels_on_grid(weights) tf.summary.image('conv1/kernels', grid, max_outputs=1) top_k_op = tf.nn.in_top_k(logits, labels, 1) # Calculate loss. loss = fer2013.loss(logits, labels) acc = fer2013.accuracy(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = fer2013.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.global_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Build an initialization operation to run below. init = tf.global_variables_initializer() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph) epoch_size = int(fer2013.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.train_batch_size) epoch_count = 0 total_sample_count = epoch_size * FLAGS.train_batch_size init_local = tf.local_variables_initializer() sess.run(init_local) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: accu = sess.run([acc]) print('Acc: ', accu) num_examples_per_step = FLAGS.train_batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) if step % epoch_size == 0: epoch_count += 1 print('epoch: ' + str(epoch_count)) print('Training finished') true_count = 0 st = 0 while st < epoch_size: predictions = sess.run([top_k_op]) true_count += np.sum(predictions) st += 1 accuracy = true_count / total_sample_count print("Accuracy: ", accuracy, ' right predicted: ', true_count)
def train(): """Train FER2013 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for FER2013. images, labels = fer2013.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = fer2013.inference(images) # Calculate loss. loss = fer2013.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = fer2013.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, graph_def=sess.graph_def) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_input_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
def predict(): """Eval FER2013 for a number of steps.""" with tf.Graph().as_default(): images, _ = fer2013.inputs(eval_data=FLAGS.eval_data, input_file=input_image_csv) keep_prob = 1 # Build a Graph that computes the logits predictions from the # inference model. logits = fer2013.inference( images, keep_prob, -1) # batch size -1: accepts dynamic batch sizes # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( fer2013.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # ---------------------- Version 1 with top k predictions -------------------- _, top_k_pred = tf.nn.top_k(logits, k=3) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) print("checkpoint file found") else: print('No checkpoint file found') return # Start input enqueue threads. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) top_indices = sess.run([top_k_pred]) print("Predicted as TOP 3: ", top_indices[0][0], " for your input image.") print('Predicted as 1.: ', top_indices[0][0][0], ' -> ', emotion_dict[top_indices[0][0][0]]) print('Predicted as 2.: ', top_indices[0][0][1], ' -> ', emotion_dict[top_indices[0][0][1]]) print('Predicted as 3.: ', top_indices[0][0][2], ' -> ', emotion_dict[top_indices[0][0][2]]) coord.request_stop() coord.join(threads) # -------------------- end Version 1 ----------------------- # Version 2 with argmax # Restore the moving average version of the learned variables for eval. """ prediction = make_prediction(saver=saver, logits=logits) print('Predicted emotion: ', prediction[0], ' -> ', emotion_dict[prediction[0]]) """ # ------------------ end Version 2 -------------------- img = cv2.imread(local_directory + input_image_png, 0) cv2.imshow("Emotion Image", img) print( "--------------- Press ENTER to return to Webcam ---------------") key = cv2.waitKey(0) if key == 13: cv2.destroyAllWindows()