def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) if not HAVE_ST: raise RuntimeError( "Trying to run fermipy analysis, but don't have ST") if is_not_null(args.roi_baseline): gta = GTAnalysis.create(args.roi_baseline, args.config) else: gta = GTAnalysis(args.config, logging={'verbosity': 3}, fileio={'workdir_regex': '\.xml$|\.npy$'}) gta.print_roi() test_source = args.target gta.sed(test_source, outfile='sed_%s.fits' % 'FL8Y', make_plots=True) gta.extension(test_source, make_plots=True) return gta
class ExtensionFit: def __init__(self, configFile): self.gta = GTAnalysis(configFile, logging={'verbosity': 3}) self.target = None self.targetRadius = None self.distance = None self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit', 1) def setSourceName(self, sourceObject, newName): self.gta.delete_source(sourceObject['name']) self.gta.add_source(newName, sourceObject) ''' INITIALIZE ''' def initialize(self, sizeROI, rInner, addToROI, TSMin, debug): self.gta.setup() if self.gta.config['selection']['emin'] >= 10000: self.gta.set_parameter('galdiff', 'Scale', 30000) if debug == True: self.gta.make_plots('startAll') self.gta.residmap(prefix='startAll', make_plots=True) # Get model source names sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff']) # Delete sources unassociated with TS < 50 for i in range(len(sourceList)): if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[ 'CLASS'][self.catalog['Source_Name'] == sourceList[i] ['name']][0] == '': self.gta.delete_source(sourceList[i]['name']) closests = self.gta.get_sources(distance=rInner, exclude=['isodiff', 'galdiff']) # Delete all unidentified sources for i in range(len(closests)): if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i] ['name']][0].isupper() == False: self.gta.delete_source(closests[i]['name']) if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i] ['name']][0] == 'SFR': self.target = closests[i] self.setSourceName(self.target, 'TESTSOURCE') # If debug, save ROI and make plots if debug == True: self.gta.write_roi('startModel') self.gta.residmap(prefix='start', make_plots=True) self.gta.make_plots('start') # Optmize spectral parameters for sources with npred > 1 self.gta.optimize(npred_threshold=1, skip=['isodiff']) # Get model source names sourceList = self.gta.get_sources(distance=sizeROI + addToROI, square=True, exclude=['isodiff', 'galdiff']) # Iterate source localizing on source list for i in range(len(sourceList)): if sourceList[i].extended == False: self.gta.localize(sourceList[i]['name'], write_fits=False, write_npy=False, update=True) # Free sources within ROI size + extra distance from center self.gta.free_sources(distance=sizeROI + addToROI, square=True) # Re-optimize ROI self.gta.optimize(skip=['isodiff']) # Save and make plots if debug if debug == True: self.gta.write_roi('modelInitialized') self.gta.residmap(prefix='initialized', make_plots=True) self.gta.make_plots('initialized') # Lock sources self.gta.free_sources(free=False) ''' OUTER REGION ''' def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold, minSeparation, debug): self.gta.free_sources(distance=sizeROI, pars='norm', square=True, free=True) self.gta.free_sources(distance=rInner, free=False) self.gta.free_source('galdiff', free=True) self.gta.free_source('isodiff', free=False) # Seek new sources until none are found sourceModel = { 'SpectrumType': 'PowerLaw', 'Index': 2.0, 'Scale': 30000, 'Prefactor': 1.e-15, 'SpatialModel': 'PointSource' } newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold, min_separation=minSeparation, model=sourceModel, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [rInner, sizeROI] }) if len(newSources) > 0: for i in range(len(newSources)): if newSources['sources'][i]['ts'] > 100.: self.gta.set_source_spectrum( newSources['sources'][i]['name'], spectrum_type='LogParabola') self.gta.free_source(newSources['sources'][i]['name']) self.gta.fit() self.gta.free_source(newSources['sources'][i]['name'], free=False) # Optimize all ROI self.gta.optimize(skip=['isodiff']) # Save sources found if debug == True: self.gta.residmap(prefix='outer', make_plots=True) self.gta.write_roi('outerAnalysisROI') self.gta.make_plots('outer') ''' INNER REGION ''' def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold, minSeparation, dmMin, TSm1Min, TSextMin, debug): self.gta.free_sources(distance=sizeROI, square=True, free=False) self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff']) # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner if self.target != None: print('Closest source identified with star forming region : ', self.target['name']) self.gta.set_source_morphology('TESTSOURCE', **{'spatial_model': 'PointSource'}) else: closeSources = self.gta.find_sources(sqrt_ts_threshold=2., min_separation=minSeparation, max_iter=1, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [0., rInner] }) dCenter = np.array([]) for i in range(len(closeSources['sources'])): dCenter = np.append( dCenter, self.gta.roi.skydir.separation( closeSources['sources'][i].skydir).value) self.target = closeSources['sources'][np.argmin(dCenter)] print('Target name : ', self.target['name']) self.setSourceName(self.target, 'TESTSOURCE') for i in [ x for x in range(len(closeSources['sources'])) if x != (np.argmin(dCenter)) ]: self.gta.delete_source(closeSources['sources'][i]['name']) self.gta.optimize(skip=['isodiff']) # Initialize n sources array nSources = [] # Save ROI without extension fit self.gta.write_roi('nSourcesFit') if debug == True: self.gta.make_plots('innerInit') self.gta.residmap(prefix='innerInit', make_plots=True) # Test for extension extensionTest = self.gta.extension('TESTSOURCE', make_plots=True, write_npy=debug, write_fits=debug, spatial_model='RadialDisk', update=True, free_background=True, fit_position=True) extLike = extensionTest['loglike_ext'] TSext = extensionTest['ts_ext'] print('TSext : ', TSext) extAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.write_roi('extFit') if debug == True: self.gta.residmap(prefix='ext0', make_plots=True) self.gta.make_plots('ext0') self.gta.load_roi('nSourcesFit', reload_sources=True) for i in range(1, maxIter + 1): # Test for n point sources nSourcesTest = self.gta.find_sources( sources_per_iter=1, sqrt_ts_threshold=sqrtTsThreshold, min_separation=minSeparation, max_iter=1, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [0., rInner] }) if len(nSourcesTest['sources']) > 0: if nSourcesTest['sources'][0]['ts'] > 100.: self.gta.set_source_spectrum( nSourcesTest['sources'][0]['name'], spectrum_type='LogParabola') self.gta.free_source(nSourcesTest['sources'][0]['name']) self.gta.fit() self.gta.free_source(nSourcesTest['sources'][0]['name'], free=False) if debug == True: self.gta.make_plots('nSources' + str(i)) nSources.append(nSourcesTest['sources']) self.gta.localize(nSourcesTest['sources'][0]['name'], write_npy=debug, write_fits=debug, update=True) nAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.free_source(nSourcesTest['sources'][0]['name'], free=True) self.gta.residmap(prefix='nSources' + str(i), make_plots=True) self.gta.write_roi('n1SourcesFit') # Estimate Akaike Information Criterion difference between both models dm = extAIC - nAIC print('AIC difference between both models = ', dm) # Estimate TS_m+1 extensionTestPlus = self.gta.extension( 'TESTSOURCE', make_plots=True, write_npy=debug, write_fits=debug, spatial_model='RadialDisk', update=True, free_background=True, fit_position=True) TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike) print('TSm+1 = ', TSm1) if debug == True: self.gta.residmap(prefix='ext' + str(i), make_plots=True) self.gta.make_plots('ext' + str(i)) if dm < dmMin and TSm1 < TSm1Min: self.gta.load_roi('extFit', reload_sources=True) break else: # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI extensionTest = extensionTestPlus extLike = extensionTestPlus['loglike_ext'] TSext = extensionTestPlus['ts_ext'] print('TSext : ', TSext) extAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.write_roi('extFit') self.gta.load_roi('n1SourcesFit', reload_sources=True) self.gta.write_roi('nSourcesFit') else: if TSext > TSextMin: self.gta.load_roi('extFit', reload_sources=True) break else: self.gta.load_roi('nSourcesFit', reload_sources=True) break self.gta.fit() # Get source radius depending on spatial model endSources = self.gta.get_sources() for i in range(len(endSources)): if endSources[i]['name'] == 'TESTSOURCE': self.target = endSources[i] self.distance = self.gta.roi.skydir.separation( endSources[i].skydir).value if endSources[i].extended == True: self.targetRadius = endSources[i]['SpatialWidth'] else: self.targetRadius = endSources[i]['pos_r95'] ''' CHECK OVERLAP ''' def overlapDisk(self, rInner, radiusCatalog): print('Target radius : ', self.targetRadius) # Check radius sizes if radiusCatalog < self.targetRadius: r = float(radiusCatalog) R = float(self.targetRadius) else: r = float(self.targetRadius) R = float(radiusCatalog) # Estimating overlapping area d = self.distance print('Distance from center : ', d) if d < (r + R): if R < (r + d): area = r**2 * np.arccos( (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos( (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt( (-d + r + R) * (d + r - R) * (d - r + R) * (d + r + R)) overlap = round((area / (np.pi * r**2)) * 100, 2) else: area = np.pi * r**2 overlap = 100.0 else: area = 0. overlap = 0. print('Overlapping surface : ', area) print('Overlap : ', overlap) if overlap > 68. and self.distance < rInner: associated = True else: associated = False return associated ''' CHECK UPPER LIMIT ''' def upperLimit(self, name, radius): sourceModel = { 'SpectrumType': 'PowerLaw', 'Index': 2.0, 'Scale': 30000, 'Prefactor': 1.e-15, 'SpatialModel': 'RadialDisk', 'SpatialWidth': radius, 'glon': self.gta.config['selection']['glon'], 'glat': self.gta.config['selection']['glat'] } self.gta.add_source(name, sourceModel, free=True) self.gta.fit() self.gta.residmap(prefix='upperLimit', make_plots=True) print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
gta = GTAnalysis(args.config, logging={"verbosity": 3}) gta.setup() gta.simulate_roi(restore=True) ext_fit_data = [] halo_fit_data = [] gta.write_roi("base_model", save_model_map=False, make_plots=False) for i in range(1): gta.load_xml("base_model") gta.simulate_roi(randomize=False) gta.free_source("testsource") gta.update_source("testsource") # gta.fit() gta.free_sources(free=False) gta.extension("testsource", width=np.logspace(-2.5, -0.5, 9)) ext_fit_data += [copy.deepcopy(gta.roi["testsource"])] gta.write_roi("fit%04i" % i, save_model_map=False, make_plots=False, format="npy") fit_halo(gta, "fit%04i" % i, "testsource", halo_width, halo_index) np.save(os.path.join(gta._savedir, "ext_fit_data.npy"), ext_fit_data)