Esempio n. 1
0
def classes(n):
    """
    Returns different classes for a positive integer n.
    Two integers are in same class only and only if they have same gcd with n.

    Parameters
    ----------
    n : int
        denotes positive integer of which class distribution is neede
    return : dictionary
        key : int
             denotes the gcd values
        value : array
             denotes the elements belonging to same class

    """
    classes_dict = {}
    for i in range(1,n+1):
        if gcd(i,n) in classes_dict:
            classes_dict[gcd(i,n)].append(i)
        else:
            classes_dict[gcd(i,n)] = [i]
    return classes_dict
Esempio n. 2
0
def isSol(a, b, m):
    """
    Checks if solution exist for the linear congruence equation ax ≡ b (mod m)

    Parameters
    ----------
    a : int
        denotes a in ax ≡ b (mod m)
    b : int
        denotes b in ax ≡ b (mod m)
    m : int
        denotes m in ax ≡ b (mod m)
    return : bool
        returns true if solution exist otherwise false

    """
    return isDivisible(gcd(a, m), b)
Esempio n. 3
0
def if_infinite_prime_AP(a, d):
    """
    Returns true if there exist infinte number of prime numbers in the arithmetic progression having first term as 'a' and common difference 'd'

    Parameters
    ----------
    a : int
        integer denoting first term of AP
    d : int
        integer denoting common difference of Ap
    return : bool
        return true if there exist infinte primes in AP otherwise false

    """
    if (a != int(a) or d != int(d)):
        raise ValueError("a and d must be integer")

    return gcd(a, d) == 1
Esempio n. 4
0
def is_gauss_sum_separable(n, k):
    """
    Returns true if gauss sum is separble for dirichlet characters mod k calculated for positive integer n

    Parameters
    ----------
    n : int
        denotes positive integer for which dirichlet characters are calculated
    k : int
        denotes positive intger mod
    return : bool
        returns true if gauss sum is separable otherwise false

    """
    if (n != int(n) or k != int(k) or n < 1 or k < 1):
        raise ValueError("n and k must be positive integers")
    return gcd(n, k) == 1


#conductor of dirichlet character mod k
Esempio n. 5
0
def isInteger_sol(a, b, c):
    """
    Checks if integer solution exist for ax + by = c

    Parameters
    ----------
    a : int
        denotes a in ax + by = c
    b : int
        denotes b in ax + by = c
    c : int
        denotes c in ax + by = c
    return : bool
        return true if integer solution exist otherwise false

    """
    return isDivisible(gcd(a, b), c)


# def integer_sol(a,b,c)
Esempio n. 6
0
def sol_count(a, b, m):
    """
    Returns number of solutions of ax ≡ b (mod m) that are least residue (mod m)

    Parameters
    ----------
    a : int
        denotes a in ax ≡ b (mod m)
    b : int
        denotes b in ax ≡ b (mod m)
    m : int
        denotes m in ax ≡ b (mod m)

    """
    if (isSol(a, b, m) == False):
        return 0
    elif (isCoprime(a, m)):
        return 1
    else:
        return gcd(a, m)
Esempio n. 7
0
def isTerminate(num,den):
    """
    Checks if given fraction's decimal expansion terminates or not

    Parameters
    ----------
    num : int
        denotes numerator of fraction
    den : int
        denotes denominator of fraction
    return : bool
        returns true if decimal expansion terminates otherwise false

    """
    if(num!=int(num) or den!=int(den)):
        raise ValueError(
            "num and den are integers"
        )
    if(den == 0):
        raise ValueError(
            "den cannot be zero"
        )
    num = abs(num)
    den = abs(den)
    if(num == 0):
        return True
    GCD = gcd(num,den)
    num = num/GCD
    den = den/GCD
    while(den > 0):
        if(den%2 == 0):
            den = den//2
        else:
            break
    while(den > 0):
        if(den%5 == 0):
            den = den//5
        else:
            break
    return den==1
Esempio n. 8
0
def find_sol(a, b, m):
    """
    Finds all solutions of equation ax ≡ b (mod m)

    Parameters
    ----------
    a : int
        denotes a in ax ≡ b (mod m)
    b : int
        denotes b in ax ≡ b (mod m)
    m : int
        denotes m in ax ≡ b (mod m)
    return : array
        returns an array of integers denoting solutions of ax ≡ b (mod m)

    """
    solutions = []

    if (isSol(a, b, m) == False):
        return solutions

    elif (sol_count(a, b, m) == 1):
        for i in range(1, m):
            if (((a * i) % m) == (b % m)):
                solutions.append(i)
                return solutions

    else:
        temp_gcd = gcd(a, m)
        a = a // temp_gcd
        b = b // temp_gcd
        m = m // temp_gcd
        temp_ans = -1
        for i in range(1, m):
            if (((a * i) % m) == (b % m)):
                temp_ans = i
                break
        for i in range(temp_gcd):
            solutions.append(temp_ans + (i * m))
        return solutions
Esempio n. 9
0
def test_gcd2():
    a = 343
    b = 280
    assert gcd(a, b) == 7
Esempio n. 10
0
def test_gcd1():
    a = 2
    b = 100
    assert gcd(a, b) == 2