Esempio n. 1
0
def individual_to_fhir(obj):
    """Converts Individual to FHIR Patient.

    :param obj: Individual json
    :return: FHIR Patient json
    """

    # first validate if phenopackets object is well-formed
    schema_path = os.path.join(SCHEMA_PATH, 'individual_schema.json')
    try:
        validate_schema(schema_path, obj)
    except jsonschema.exceptions.ValidationError:
        raise Exception("The individual object is not valid.")

    patient = p.Patient()
    patient.id = obj['id']
    patient.birthDate = fhirdate.FHIRDate(obj.get('dateOfBirth', None))
    patient.gender = obj.get('sex', None)
    patient.active = obj.get('active', None)
    patient.deceasedBoolean = obj.get('deceased', None)
    patient.extension = list()
    # age
    if 'age' in obj:
        age_extension = age_to_fhir(
            obj, PHENOPACKETS_ON_FHIR_MAPPING['individual']['age'], 'age')
        patient.extension.append(age_extension)
    # karyotypic_sex
    if 'karyotypicSex' in obj:
        karyotypic_sex_extension = extension.Extension()
        karyotypic_sex_extension.url = PHENOPACKETS_ON_FHIR_MAPPING[
            'individual']['karyotypicSex']['url']
        karyotypic_sex_extension.valueCodeableConcept = codeableconcept.CodeableConcept(
        )
        karyotypic_sex_extension.valueCodeableConcept.coding = list()
        coding = c.Coding()
        coding.display = obj.get('karyotypicSex', None)
        coding.code = obj.get('karyotypicSex', None)
        coding.system = PHENOPACKETS_ON_FHIR_MAPPING['individual'][
            'karyotypicSex']['system']
        karyotypic_sex_extension.valueCodeableConcept.coding.append(coding)
        patient.extension.append(karyotypic_sex_extension)
    # taxonomy
    if 'taxonomy' in obj:
        taxonomy_extension = extension.Extension()
        taxonomy_extension.url = PHENOPACKETS_ON_FHIR_MAPPING['individual'][
            'taxonomy']
        taxonomy_extension.valueCodeableConcept = codeableconcept.CodeableConcept(
        )
        taxonomy_extension.valueCodeableConcept.coding = list()
        coding = c.Coding()
        coding.display = obj.get('taxonomy', None).get('label', None)
        coding.code = obj.get('taxonomy', None).get('id', None)
        taxonomy_extension.valueCodeableConcept.coding.append(coding)
        patient.extension.append(taxonomy_extension)
    return patient.as_json()
Esempio n. 2
0
    def add_phased_relationship_obv(self):
        patient_reference = reference.FHIRReference(
            {"reference": "Patient/" + self.patientID})
        self.sequence_rels \
            = get_sequence_relation(self.phased_rec_map)
        for index in self.sequence_rels.index:
            siduid = "sid-" + uuid4().hex[:13]
            self.result_ids.append(siduid)

            observation_sid = observation.Observation()
            observation_sid.resource_type = "Observation"
            observation_sid.id = siduid
            observation_sid.meta = meta.Meta({
                "profile":
                [("http://hl7.org/fhir/uv/" + "genomics-reporting/" +
                  "StructureDefinition/" + "sequence-phase-relationship")]
            })
            observation_sid.status = "final"
            observation_sid.category = [
                concept.CodeableConcept({
                    "coding": [{
                        "system": ("http://terminology.hl7.org/" +
                                   "CodeSystem/observation-category"),
                        "code":
                        "laboratory"
                    }]
                })
            ]
            observation_sid.code = concept.CodeableConcept({
                "coding": [{
                    "system": "http://loinc.org",
                    "code": "82120-7",
                    "display": "Allelic phase"
                }]
            })
            observation_sid.subject = patient_reference
            observation_sid.valueCodeableConcept = concept.CodeableConcept({
                "coding": [{
                    "system":
                    ("http://hl7.org/fhir/uv/" + "genomics-reporting/" +
                     "CodeSystem/seq-phase-relationship"),
                    "code":
                    self.sequence_rels.at[index, 'Relation'],
                    "display":
                    self.sequence_rels.at[index, 'Relation']
                }]
            })
            self.report.contained.append(observation_sid)
Esempio n. 3
0
def get_codeable_concept(system, code, display=None):
    codeable_concept = {"coding": [{}]}
    codeable_concept['coding'][0]['system'] = system
    codeable_concept['coding'][0]['code'] = code
    if display is not None:
        codeable_concept['coding'][0]['display'] = display
    return concept.CodeableConcept(codeable_concept)
Esempio n. 4
0
    def to_fhir(self):
        route_code = codeableconcept.CodeableConcept()
        route_code.coding = [
            route_coding.to_fhir() for route_coding in self.coding
        ]

        return route_code
Esempio n. 5
0
def _get_section_object(nested_obj, title):
    """Internal function to convert phenopacket m2m objects to Composition section.

    :param nested_obj: m2m relationship object
    :param title: field name that holds m2m relationship
    :return: section content object
    """

    section_content = comp.CompositionSection()
    section_values = PHENOPACKETS_ON_FHIR_MAPPING['phenopacket'][title]
    section_content.title = section_values['title']
    section_content.code = codeableconcept.CodeableConcept()
    section_content.code.coding = []
    coding = c.Coding()
    coding.system = section_values['code']['system']
    coding.version = section_values['code']['version']
    coding.code = section_values['code']['code']
    coding.display = section_values['code']['display']
    section_content.code.coding.append(coding)

    section_content.entry = []
    for item in nested_obj:
        entry = fhirreference.FHIRReference()
        if item.get('id'):
            entry.reference = str(item['id'])
        elif item.get('uri'):
            entry.reference = item['uri']
        else:
            # generate uuid when no 'id' or 'uri' present
            entry.reference = str(uuid.uuid1())
        section_content.entry.append(entry)
    return section_content
Esempio n. 6
0
    def __init__(self, Organization=None):
        """
        Uses fhirclient.models to create and post practitoner resource. Currently, using class variables.

        :param smart: fhirclient.client.FHIRClient object.
        :returns: practitioner id created by server
        """
        if Organization is None:
            self.Organization = generateorganization.GenerateOrganization(
            ).Organization
        else:
            self.Organization = Organization

        Practitioner = pr.Practitioner()
        PractitionerQualification = pr.PractitionerQualification()
        CodeableConcept = cc.CodeableConcept()
        Coding = c.Coding()
        Coding.code = random.choice(['MD', 'DO'])
        Coding.system = 'https://www.hl7.org/fhir/v2/0360/2.7/index.html'
        CodeableConcept.coding = [Coding]
        PractitionerQualification.code = CodeableConcept
        Practitioner.qualification = [PractitionerQualification]
        name = hn.HumanName()
        self.family, self.given, Practitioner.gender = self._generate_person()
        name.family = [self.family]
        name.given = [self.given]
        Practitioner.name = name
        self._validate(Practitioner)
        self.response = self.post_resource(Practitioner)
        Practitioner.id = self._extract_id()
        self.Practitioner = Practitioner
        print(self)
Esempio n. 7
0
    def annotate(self, obsid):
        obs = o.Observation()
        obs.uuid = uuid.uuid4().urn
        observation = o.Observation.read(obsid, self.smart.server)
        obs.specimen = observation.specimen
        obs.related = observation.related
        obs.basedOn = observation.basedOn
        obs.code = observation.code
        obs.component = observation.component
        obs.method = observation.method
        seq_id = observation.related[0].target.reference.split("/")[1]
        seq = s.Sequence.read(seq_id, self.smart.server)
        obseverved_seq = seq.observedSeq
        annotation = self.gfeapi.annotate_get(obseverved_seq, imgthla_version="3.31.0")
        gfe = annotation.gfe
        bodysite3 = cc.CodeableConcept()
        bodySiteCoding3 = mkCoding(system='http://act.b12x.org',
                                   code='261063000',
                                   version="0.0.5")

        bodysite3.coding = [bodySiteCoding3]
        bodysite3.text = gfe
        obs.valueCodeableConcept = bodysite3
        obs.status = 'final'
        obs.subject = observation.subject
        return obs
 def category(self):
     return [cc.CodeableConcept({
         "coding": [{
             "system": "http://hl7.org/fhir/observation-category",
             "code": "vital-signs",
             "display": "Vital Signs"
         }]
     })]
def fhir_specimen(obj):
    """ Converts biosample to FHIR Specimen. """

    specimen = s.Specimen()
    specimen.identifier = []
    # id
    identifier = fhir_indentifier.Identifier()
    identifier.value = obj['id']
    specimen.identifier.append(identifier)
    # individual - subject property in FHIR is mandatory for a specimen
    specimen.subject = fhirreference.FHIRReference()
    specimen.subject.reference = obj.get('individual', 'unknown')
    # sampled_tissue
    specimen.type = codeableconcept.CodeableConcept()
    specimen.type.coding = []
    coding = c.Coding()
    coding.code = obj['sampled_tissue']['id']
    coding.display = obj['sampled_tissue']['label']
    specimen.type.coding.append(coding)
    # description
    if 'description' in obj.keys():
        specimen.note = []
        annotation = a.Annotation()
        annotation.text = obj.get('description', None)
        specimen.note.append(annotation)
    # procedure
    specimen.collection = s.SpecimenCollection()
    specimen.collection.method = fhir_codeable_concept(
        obj['procedure']['code'])
    if 'body_site' in obj['procedure'].keys():
        specimen.collection.bodySite = fhir_codeable_concept(
            obj['procedure']['body_site'])
    # Note on taxonomy from phenopackets specs:
    # Individuals already contain a taxonomy attribute so this attribute is not needed.
    # extensions
    specimen.extension = []
    # individual_age_at_collection
    if 'individual_age_at_collection' in obj.keys():
        ind_age_at_collection_extension = fhir_age(
            obj, PHENOPACKETS_ON_FHIR_MAPPING['biosample']
            ['individual_age_at_collection'], 'individual_age_at_collection')
        specimen.extension.append(ind_age_at_collection_extension)
    concept_extensions = codeable_concepts_fields([
        'histological_diagnosis', 'tumor_progression', 'tumor_grade',
        'diagnostic_markers'
    ], 'biosample', obj)
    for concept in concept_extensions:
        specimen.extension.append(concept)

    if 'is_control_sample' in obj.keys():
        control_extension = extension.Extension()
        control_extension.url = PHENOPACKETS_ON_FHIR_MAPPING['biosample'][
            'is_control_sample']
        control_extension.valueBoolean = obj['is_control_sample']
        specimen.extension.append(control_extension)
    # TODO 2m extensions - references
    return specimen.as_json()
Esempio n. 10
0
 def category(self):
     return cc.CodeableConcept({
         "coding": [{
             "system": "http://hl7.org/fhir/observation-category",
             "code": "activity",
             "display": "Activity"
         }],
         "text":
         "Activity"
     })
Esempio n. 11
0
 def code(self):
     return cc.CodeableConcept({
         "coding": [{
             "system": "https://r.details.loinc.org/LOINC",
             "code": "67775-7",
             "display": "Level of responsiveness"
         }],
         "text":
         "Level of responsiveness"
     })
Esempio n. 12
0
def fhir_patient(obj):
    """ Converts Individual to FHIR Patient. """

    patient = p.Patient()
    patient.id = obj['id']
    patient.birthDate = fhirdate.FHIRDate(obj.get('date_of_birth', None))
    patient.gender = obj.get('sex', None)
    patient.active = obj.get('active', None)
    patient.deceasedBoolean = obj.get('deceased', None)
    patient.extension = list()
    # age
    if 'age' in obj.keys():
        age_extension = fhir_age(
            obj, PHENOPACKETS_ON_FHIR_MAPPING['individual']['age'], 'age')
        patient.extension.append(age_extension)
    # karyotypic_sex
    karyotypic_sex_extension = extension.Extension()
    karyotypic_sex_extension.url = PHENOPACKETS_ON_FHIR_MAPPING['individual'][
        'karyotypic_sex']['url']
    karyotypic_sex_extension.valueCodeableConcept = codeableconcept.CodeableConcept(
    )
    karyotypic_sex_extension.valueCodeableConcept.coding = list()
    coding = c.Coding()
    coding.display = obj.get('karyotypic_sex', None)
    coding.code = obj.get('karyotypic_sex', None)
    coding.system = PHENOPACKETS_ON_FHIR_MAPPING['individual'][
        'karyotypic_sex']['system']
    karyotypic_sex_extension.valueCodeableConcept.coding.append(coding)
    patient.extension.append(karyotypic_sex_extension)
    # taxonomy
    if 'taxonomy' in obj.keys():
        taxonomy_extension = extension.Extension()
        taxonomy_extension.url = PHENOPACKETS_ON_FHIR_MAPPING['individual'][
            'taxonomy']
        taxonomy_extension.valueCodeableConcept = codeableconcept.CodeableConcept(
        )
        taxonomy_extension.valueCodeableConcept.coding = list()
        coding = c.Coding()
        coding.display = obj.get('taxonomy', None).get('label', None)
        coding.code = obj.get('taxonomy', None).get('id', None)
        taxonomy_extension.valueCodeableConcept.coding.append(coding)
        patient.extension.append(taxonomy_extension)
    return patient.as_json()
Esempio n. 13
0
 def interpretation(self):
     return cc.CodeableConcept({
         "coding": [
             {
                 "system": "http://hl7.org/fhir/v2/0078",
                 "code": "H",
                 "display": "High"
             }
         ]
     })
Esempio n. 14
0
 def interpretation(self):
     return cc.CodeableConcept({
         "coding": [
             {
                 "system": "http://hl7.org/fhir/v2/0078",
                 "code": "N",
                 "display": "Normal"
             }
         ],
         "text": "Normal (applies to non-numeric results)"
     })
Esempio n. 15
0
 def _get_region_studied_component(self, reportable_query_regions,
                                   nocall_regions):
     observation_rs_components = []
     for _, row in reportable_query_regions.df.iterrows():
         obv_comp = observation.ObservationComponent()
         obv_comp.code = concept.CodeableConcept({
             "coding": [{
                 "system": "http://loinc.org",
                 "code": "51959-5",
                 "display": "Ranges-examined component"
             }]
         })
         obv_comp.valueRange = valRange.Range({
             "low": {
                 "value": np.float(row['Start']) + 1
             },
             "high": {
                 "value": np.float(row['End']) + 1
             }
         })
         observation_rs_components.append(obv_comp)
     for _, row in nocall_regions.df.iterrows():
         obv_comp = observation.ObservationComponent()
         obv_comp.code = concept.CodeableConcept({
             "coding": [{
                 "system": "http://loinc.org",
                 "code": "TBD-UncallableRegions",
                 "display": "Uncallable region"
             }]
         })
         obv_comp.valueRange = valRange.Range({
             "low": {
                 "value": np.float(row['Start']) + 1
             },
             "high": {
                 "value": np.float(row['End']) + 1
             }
         })
         observation_rs_components.append(obv_comp)
     return observation_rs_components
Esempio n. 16
0
 def category(self):
     return [
         cc.CodeableConcept({
             "coding": [{
                 "system":
                 "http://terminology.hl7.org/CodeSystem/observation-category",
                 "code": "vital-signs",
                 "display": "Vital Signs"
             }],
             "text":
             "Vital Signs"
         })
     ]
Esempio n. 17
0
def fhir_codeable_concept(obj):
    """ Generic function to convert object to FHIR CodeableConcept. """

    codeable_concept = codeableconcept.CodeableConcept()
    codeable_concept.coding = []
    if isinstance(obj, list):
        for item in obj:
            coding = fhir_coding_util(item)
            codeable_concept.coding.append(coding)
    else:
        coding = fhir_coding_util(obj)
        codeable_concept.coding.append(coding)
    return codeable_concept
Esempio n. 18
0
    def _create_FHIRCodeableConcept(self, code, system=None, display=None):
        """
        Creates and returns a FHIRCodeableConcept object. References self._create_FHIRCoding()

        :param self:
        :param code: code from standard System
        :param system: coding System
        :param display: how the resource should be displayed
        :returns: CodeableConcept FHIR object
        """
        CodeableConcept = cc.CodeableConcept()
        Coding = self._create_FHIRCoding(code, system, display)
        CodeableConcept.coding = [Coding]
        return CodeableConcept
Esempio n. 19
0
def map_cc(concept):
    # create CodeableConcept based on slot data
    cc = CC.CodeableConcept()
    cc.coding = []
    cc.text = concept.text
    try:
        cc_coding = Coding.Coding()
        for translation in concept.coding:
            cc_coding.code = translation.code
            cc_coding.display = translation.display
            cc_coding.system = translation.system
            cc.coding.append(cc_coding)
    except TypeError:  # coding missing
        pass
    return (cc)
def mksequence():
    """
    make a Sequence resource using the data model
    """
    import fhirclient.models.sequence as s
    sequence = s.Sequence({
        # 'id': 'seq-1',
        'coordinateSystem': 0
    })
    # adding uuid attribute to the sequence object
    # for later use in building bundles and referencing
    # resources with fullUrl
    sequence.uuid = uuid.uuid4().urn

    import fhirclient.models.coding as c
    coding = c.Coding()
    coding.system = 'http://www.ebi.ac.uk/ipd/imgt/hla/'
    coding.version = '3.23'
    coding.display = 'HLA-A*01:01:01:01'
    coding.code = 'HLA00001'

    import fhirclient.models.codeableconcept as cc
    codecon = cc.CodeableConcept()
    codecon.coding = [coding]
    codecon.text = 'HLA-A*01:01:01:01'

    refseq = s.SequenceReferenceSeq()
    refseq.referenceSeqId = codecon
    refseq.windowStart = 503
    refseq.windowEnd = 773

    sequence.type = 'dna'
    sequence.referenceSeq = refseq
    sequence.observedSeq = (
        'GCTCCCACTCCATGAGGTATTTCTTCACATCCGTGTCCCGGCCCGGCCGCGGGGAGCCCC'
        'GCTTCATCGCCGTGGGCTACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACGCCG'
        'CGAGCCAGAAGATGGAGCCGCGGGCGCCGTGGATAGAGCAGGAGGGGCCGGAGTATTGGG'
        'ACCAGGAGACACGGAATATGAAGGCCCACTCACAGACTGACCGAGCGAACCTGGGGACCC'
        'TGCGCGGCTACTACAACCAGAGCGAGGACG')

    import fhirclient.models.narrative as n
    narrative = n.Narrative()
    narrative.div = ('<div xmlns="http://www.w3.org/1999/xhtml">'
                     '<pre>HLA-A*01:01:01:01, exon 3</pre>'
                     '</div>')
    narrative.status = 'generated'
    sequence.text = narrative
    return sequence
Esempio n. 21
0
    def _add_codeable_value(self, Observation, measurement):
        """
        Adds a codeableconcept value object to Observation.

        :param Observation: fhirclient.models.observation.Observation object
        :param measurement: measurement dictionary
        :returns: Observation FHIR object
        """
        CodeableConcept = cc.CodeableConcept()
        Coding = c.Coding()
        Coding.system = 'http://loinc.org'
        Coding.code = self.observation_dict[measurement]['value_loinc']
        Coding.display = self.observation_dict[measurement]['value_display']
        CodeableConcept.coding = [Coding]
        Observation.valueCodeableConcept = CodeableConcept
        return Observation
Esempio n. 22
0
def build_keyword(study_keywords):
    """
    Build the keywords up
    :param keywords:
    :return:
    """
    keywords = []
    for term in study_keywords:
        cc = codeableconcept.CodeableConcept()
        cc.text = term
        cc.coding = [
            coding.Coding(
                dict(code=quote(term),
                     system="https://example.org",
                     display=term))
        ]
        keywords.append(cc)
    return keywords
Esempio n. 23
0
 def initalize_report(self):
     patient_reference = reference.FHIRReference(
         {"reference": "Patient/" + self.patientID})
     self.report.id = "dr-" + uuid4().hex[:13]
     self.report.meta = meta.Meta({
         "profile": [("http://hl7.org/fhir/uv/genomics-reporting" +
                      "/StructureDefinition/genomics-report")]
     })
     self.report.status = "final"
     self.report.code = concept.CodeableConcept({
         "coding": [{
             "system": "http://loinc.org",
             "code": "81247-9",
             "display": "Master HL7 genetic variant reporting panel"
         }]
     })
     self.report.subject = patient_reference
     self.report.issued = date.FHIRDate(get_fhir_date())
     self.report.contained = []
Esempio n. 24
0
def build_focus(mesh_terms):
    """
    Build the ResearchStudy.focus
    :param conditions:
    :param interventions:
    :return:
    """
    # assuming mesh term here
    focus = []
    for study_term_type, terms in mesh_terms.items():
        print("{}: {}".format(study_term_type, terms))
        for term in terms:
            cc = codeableconcept.CodeableConcept()
            cc.text = term
            cc.coding = [
                coding.Coding(
                    dict(code=term, system="https://mesh.org", display=""))
            ]
            focus.append(cc)
    return focus
Esempio n. 25
0
def write(server_url, system, code, patient, value):
    observation = o.Observation()
    observation.status = "final"

    observation.subject = fr.FHIRReference()
    observation.subject.reference = ("Patient/%s" % patient)

    observation.code = cc.CodeableConcept()
    tmp = c.Coding()
    tmp.system = system
    tmp.code = code
    observation.code.coding = [tmp]

    observation.valueString = str(value)
    observation.effectiveDateTime = fd.FHIRDate("2017-11-28T00:00:00+00:00")

    #write json obj
    json_obj = observation.as_json()
    json_obj["resourceType"] = "Observation"
    print(json.dumps(json_obj))
    requests.post(server_url + "Observation", json=json_obj)
    def addObservationToServer(self, patient_id, value_code, value_unit,
                               value_quantity, coding_code, coding_display,
                               coding_system, timestamp):
        observation = o.Observation()
        # Create Value Quantity
        quantity = q.Quantity()
        quantity.code = value_code
        quantity.unit = value_unit
        quantity.value = value_quantity
        observation.valueQuantity = quantity

        # Create Coding
        code = cc.CodeableConcept()
        coding_item = c.Coding()
        coding_item.code = coding_code
        coding_item.display = coding_display
        coding_item.system = coding_system
        coding_list = [coding_item]
        code.coding = coding_list
        observation.code = code

        # Create Subject
        reference = r.FHIRReference()
        reference.reference = self.getPatientById(patient_id).relativePath()
        observation.subject = reference

        # Create Status
        observation.status = 'final'

        # Create Issued/EffectiveDateTime
        observation.effectiveDateTime = d.FHIRDate(timestamp)

        # Write the observation
        result_json = observation.create(self.smart.server)
        observation.id = self.getCreatedId(result_json)
        return observation.id
Esempio n. 27
0
def _get_section_object(nested_obj, title):
    """ Internal function to convert phenopacket m2m objects to Composition section. """

    section_content = comp.CompositionSection()
    section_values = PHENOPACKETS_ON_FHIR_MAPPING['phenopacket'][title]
    section_content.title = section_values['title']
    section_content.code = codeableconcept.CodeableConcept()
    section_content.code.coding = []
    coding = c.Coding()
    coding.system = section_values['code']['system']
    coding.version = section_values['code']['version']
    coding.code = section_values['code']['code']
    coding.display = section_values['code']['display']
    section_content.code.coding.append(coding)

    section_content.entry = []
    for item in nested_obj:
        entry = fhirreference.FHIRReference()
        if item.get('id'):
            entry.reference = str(item['id'])
        else:
            entry.reference = item['uri']
        section_content.entry.append(entry)
    return section_content
Esempio n. 28
0
def writeMedProfile(meds_medication,
                    meds_frequencyPerYear,
                    meds_fractionOfSubjects,
                    meds_correlatedLabsCoefficients,
                    meds_correlatedMedsCoefficients,
                    meds_correlatedProceduresCoefficients,
                    meds_correlatedDiagnosisCoefficients,
                    meds_correlatedPhenotypesCoefficients,
                    cohort='All',
                    sex='All',
                    race='All',
                    age_low='All',
                    age_high=None,
                    topN=10,
                    correlationCutoff=0.3):
    """Write out Medication Clinical Profile to JSON File and save locally
    
    Keywords:
    Structures from output of calculateAnyProfile(profileType='medications')
    cohort -- short name for cohort, special characters besides hyphens are prohibited (default 'All')
    sex -- specification of whether this is a 'All', 'Male', or 'Female' sex profile (default 'All')
    race -- specification of whether this is 'All', 'White or Caucasian', 'Black or African American', 'Other'
    race profile (default 'All')
    age_low -- low age range for this profile (default 'All')
    age_high -- high age range for this profile (default None)
    topN -- integer representing the maximum number of correlations to report in the profile, ranked descending (default 10)
    correlationCutoff -- minimum correlation coefficient value to report for whole profile (default 0.3)
    """
    import os
    import sys
    import sqlalchemy
    import urllib.parse
    import pandas as pd
    import numpy as np
    import getpass
    from dataclasses import dataclass
    from SciServer import Authentication
    from fhirclient.models import clinicalprofile, fhirreference, identifier, codeableconcept, fhirdate, quantity
    from datetime import datetime
    import json
    from fhir_loader import fhir_loader
    import pymssql

    # Initialize  profile
    clinicalProfile = clinicalprofile.ClinicalProfile()

    if sex == 'M':
        sex = 'Male'
    elif sex == 'F':
        sex = 'Female'

    # Header info
    if (age_low != 'All'):
        clinicalProfile.id = ('jh-medications-' + cohort + '-' + sex + '-' +
                              race + '-' + str(int(age_low)) + '-' +
                              str(int(age_high)))
        clinicalProfile.identifier = [
            identifier.Identifier({
                'value': ('jh-medications-' + cohort + '-' + sex + '-' + race +
                          '-' + str(int(age_low)) + '-' + str(int(age_high)))
            })
        ]
        clinicalProfile.cohort = fhirreference.FHIRReference({
            'reference':
            ('Group/jh-medications-' + cohort + '-' + sex + '-' + race + '-' +
             str(int(age_low)) + '-' + str(int(age_high)))
        })
    else:
        clinicalProfile.id = 'jh-medications-' + cohort + '-' + sex + '-' + race + '-' + str(
            age_low)
        clinicalProfile.identifier = [
            identifier.Identifier({
                'value':
                'jh-medications-' + cohort + '-' + sex + '-' + race + '-' +
                str(age_low)
            })
        ]
        clinicalProfile.cohort = fhirreference.FHIRReference({
            'reference': ('Group/jh-medications-' + cohort + '-' + sex + '-' +
                          race + '-' + str(age_low))
        })
    clinicalProfile.status = 'draft'
    clinicalProfile.population = fhirreference.FHIRReference(
        {'reference': 'Group/jh-medications-' + cohort})

    clinicalProfile.date = fhirdate.FHIRDate(
        str(datetime.now()).replace(' ', 'T'))
    clinicalProfile.reporter = fhirreference.FHIRReference({
        'reference':
        'Organization/JHM',
        'type':
        'Organization',
        'display':
        'Johns Hopkins School of Medicine'
    })

    meds = list()
    meds_medication = [x for x in meds_medication if str(x) != 'nan']
    for thisMed in meds_medication:
        thisCPMed = clinicalprofile.ClinicalProfileMedication()
        try:
            thisCPMed.medicationCodeableConcept = codeableconcept.CodeableConcept(
                dict(coding=[
                    dict(system='http://www.nlm.nih.gov/research/umls/rxnorm/',
                         code=str(thisMed))
                ]))

            # meds_dosageInfo
            #             thisCPMed.dose = quantity.Quantity(dict(unit=str(meds_dosageInfo.loc[thisMed])))

            thisCPMed.frequencyPerYear = round(
                float(meds_frequencyPerYear.loc[thisMed].mean()), 3)
            thisCPMed.fractionOfSubjects = round(
                float(meds_fractionOfSubjects.loc[thisMed].mean()), 3)

            try:
                topNcorrs = (pd.DataFrame(
                    meds_correlatedLabsCoefficients.loc[thisMed].groupby([
                        'LAB_LOINC'
                    ]).Relative_Counts.mean()).Relative_Counts.nlargest(
                        topN).round(3))
                entries = list()
                for code, corr in topNcorrs.iteritems():
                    if corr <= correlationCutoff:
                        continue
                    otherLab = [(dict(
                        coding=[dict(system='http://loinc.org', code=code)]))]
                    entries.append(dict(labcode=otherLab, coefficient=corr))

                if not entries:
                    print('No correlated Labs for Med ', thisMed)
                else:
                    thisCPMed.correlatedLabs = clinicalprofile.\
                                        ClinicalProfileLabScalarDistributionCorrelatedLabs(dict(topn=topN, entry=entries))
            except:
                print('No correlated Labs for Med ', thisMed)

            try:
                topNcorrs = (pd.DataFrame(
                    meds_correlatedDiagnosisCoefficients.loc[thisMed].groupby([
                        'DX'
                    ]).Relative_Counts.mean()).Relative_Counts.nlargest(
                        topN).round(3))
                entries = list()
                for code, corr in topNcorrs.iteritems():
                    if corr <= correlationCutoff:
                        continue
                    otherDX = (dict(coding=[
                        dict(system='http://www.icd10data.com/', code=code)
                    ]))
                    entries.append(dict(code=otherDX, coefficient=corr))

                if not entries:
                    print('No correlated Diagnoses for Med ', thisMed)
                else:
                    thisCPMed.correlatedDiagnoses = clinicalprofile.ClinicalProfileLabScalarDistributionCorrelatedDiagnoses(
                        dict(topn=topN, entry=entries))
            except:
                print('No correlated DX for Med ', thisMed)

            try:
                topNcorrs = (pd.DataFrame(
                    meds_correlatedProceduresCoefficients.loc[thisMed].groupby(
                        ['RAW_PX'
                         ]).Relative_Counts.mean()).Relative_Counts.nlargest(
                             topN).round(3))
                entries = list()
                for code, corr in topNcorrs.iteritems():
                    if corr <= correlationCutoff:
                        continue
                    otherProc = [(dict(coding=[
                        dict(system=
                             'http://www.ama-assn.org/practice-management/cpt',
                             code=code)
                    ]))]
                    entries.append(dict(code=otherProc, coefficient=corr))

                if not entries:
                    print('No correlated Procedures for Med ', thisMed)
                else:
                    thisCPMed.correlatedProcedures = clinicalprofile.ClinicalProfileLabScalarDistributionCorrelatedProcedures(
                        dict(topn=topN, entry=entries))
            except:
                print('No correlated Procedures for Med ', thisMed)

            try:
                topNcorrs = (pd.DataFrame(
                    meds_correlatedMedsCoefficients.loc[thisMed].groupby([
                        'JH_INGREDIENT_RXNORM_CODE'
                    ]).Relative_Counts.mean()).Relative_Counts.nlargest(
                        topN).round(3))
                entries = list()
                for code, corr in topNcorrs.iteritems():
                    if corr <= correlationCutoff:
                        continue
                    otherMed = [
                        dict(medicationCodeableConcept=dict(coding=[
                            dict(
                                system=
                                'http://www.nlm.nih.gov/research/umls/rxnorm/',
                                code=code)
                        ]))
                    ]
                    entries.append(dict(meds=otherMed, coefficient=corr))

                if not entries:
                    print('No correlated Meds for Med ', thisMed)
                else:
                    thisCPMed.correlatedMedications = clinicalprofile.ClinicalProfileLabScalarDistributionCorrelatedMedications(
                        dict(topn=topN, entry=entries))
            except:
                print('No correlated Meds for Med ', thisMed)

            try:
                topNcorrs = (pd.DataFrame(
                    meds_correlatedPhenotypesCoefficients.loc[thisMed].groupby(
                        ['HPO'
                         ]).Relative_Counts.mean()).Relative_Counts.nlargest(
                             topN).round(3))
                entries = list()
                for code, corr in topNcorrs.iteritems():
                    if corr <= correlationCutoff:
                        continue
                    otherHPO = (dict(coding=[
                        dict(system='http://hpo.jax.org/app/', code=code)
                    ]))
                    entries.append(dict(code=otherHPO, coefficient=corr))

                if not entries:
                    print('No correlated Phenotypes for Med ', thisMed)
                else:
                    thisCPMed.correlatedPhenotypes = clinicalprofile.ClinicalProfileLabScalarDistributionCorrelatedPhenotypes(
                        dict(topn=topN, entry=entries))
            except:
                print('No correlated Phenotypes for Med ', thisMed)

            meds.append(thisCPMed)

        except Exception as e:
            print(e)
            print('This med did not work ', thisMed)

    clinicalProfile.medication = meds

    if age_high != None:
        filename = cohort + '_resources/jh-medications-' + cohort + '-' + sex + '-' + race + '-' + str(
            int(age_low)) + '-' + str(int(age_high)) + '.json'
    else:
        filename = cohort + '_resources/jh-medications-' + cohort + '-' + sex + '-' + race + '-' + str(
            age_low) + '.json'

    with open(filename, 'w') as outfile:
        json.dump(clinicalProfile.as_json(), outfile, indent=4)

    del (clinicalProfile)
    return print('Write to ' + filename + ' successful')
def writeLabProfile(labs_counts, labs_frequencyPerYear, labs_fractionOfSubjects,labs_units, labs_names,
                    labs_stats, labs_aboveBelowNorm, labs_correlatedLabsCoefficients, labs_abscorrelation,
                    labs_correlatedMedsCoefficients, labs_correlatedProceduresCoefficients, 
                    labs_correlatedDiagnosisCoefficients, labs_correlatedPhenotypesCoefficients, 
                    cohort='All', sex='All', race='All', age_low='All', age_high=None,
                    topN=10, correlationCutoff=0.3):
    """Write out Lab Clinical Profile to JSON File and save locally
    
    Keywords:
    Structures from output of calculateAnyProfile(profileType='labs')
    cohort -- short name for cohort, special characters besides hyphens are prohibited (default 'All')
    sex -- specification of whether this is a 'All', 'Male', or 'Female' sex profile (default 'All')
    race -- specification of whether this is 'All', 'White or Caucasian', 'Black or African American', 'Other' race profile (default 'All')
    age_low -- low age range for this profile (default 'All')
    age_high -- high age range for this profile (default None)
    topN -- integer representing the maximum number of correlations to report in the profile, ranked descending (default 10)
    correlationCutoff -- minimum correlation coefficient value to report for whole profile (default 0.3)
    """   
    import os
    import sys
    import sqlalchemy
    import urllib.parse
    import pandas as pd
    import numpy as np
    import getpass
    from dataclasses import dataclass
    from SciServer import Authentication
    from datetime import datetime
    import json
    from fhir_loader import fhir_loader
    from fhirclient.models import clinicalprofile, fhirreference, identifier, codeableconcept, fhirdate, quantity
    import pymssql
    
    # Initialize  profile
    clinicalProfile = clinicalprofile.ClinicalProfile()
    clinicalProfile.resourceType = 'ClinicalProfile'
    
    if sex == 'M':
        sex = 'Male'
    elif sex =='F':
        sex = 'Female'
    
    # Header info
    if (age_low != 'All'):
        clinicalProfile.id = 'jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(int(age_low))+'-'+str(int(age_high))
        clinicalProfile.identifier  = [identifier.Identifier({'value': 
                                                              'jh-labs-'+cohort+'-'+sex+'-'+race+'-'+
                                                              str(int(age_low))+'-'+str(int(age_high))})]
        clinicalProfile.cohort = fhirreference.FHIRReference({'reference': 
                                                      'Group/jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(int(age_low))
                                                              +'-'+str(int(age_high))}) 
    else:
        clinicalProfile.id = 'jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(age_low)
        clinicalProfile.identifier  = [identifier.Identifier({'value': 
                                                              'jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(age_low)})]
        clinicalProfile.cohort = fhirreference.FHIRReference({'reference': 
                                                      'Group/jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(age_low)})
    clinicalProfile.status = 'draft'
    clinicalProfile.population = fhirreference.FHIRReference({'reference': 'Group/jh-labs-'+cohort})
     
    clinicalProfile.date = fhirdate.FHIRDate(str(datetime.now()).replace(' ', 'T'))
    clinicalProfile.reporter = fhirreference.FHIRReference({'reference': 'Organization/JHM',
                           'type': 'Organization',
                           'display': 'Johns Hopkins School of Medicine'})
    ## LABS
    labs = list()
    corrmat = (pd.DataFrame(labs_correlatedLabsCoefficients).unstack(level=[0,1]).corr(min_periods=50)
                        .droplevel(level=0).droplevel(level=0,axis=1))
    lab_names = pd.DataFrame({'lab_name':labs_names}).reset_index()
    lab_counts = pd.DataFrame({'lab_counts':labs_counts}).reset_index().rename({'index':'LAB_LOINC'},axis=1)
    lab_info = lab_names.merge(lab_counts, how='inner', on='LAB_LOINC').set_index('LAB_LOINC')

    for thisLab in lab_info.index:
        
        # Check if STDEV is NaN and skip that lab if so
        if np.isnan(float(labs_stats.loc[thisLab]['std'].median())):
            continue
        
        # Build the profile
        thisCPLab = clinicalprofile.ClinicalProfileLab()
#         try:
        thisCPLab.code = [codeableconcept.CodeableConcept(dict(coding=[dict(system='http://loinc.org', 
                                                                            code=thisLab)],
                                                              text=lab_info.loc[thisLab]['lab_name'][0]))]
        thisCPLab.count = int(lab_info.loc[thisLab]['lab_counts'])
        thisCPLab.frequencyPerYear = round(float(labs_frequencyPerYear.loc[thisLab].mean()),3)
        thisCPLab.fractionOfSubjects = round(float(labs_fractionOfSubjects.loc[thisLab].mean()),3)
        thisCPLab.scalarDistribution = clinicalprofile.ClinicalProfileLabScalarDistribution()
        thisCPLab.scalarDistribution.units = quantity.Quantity(dict(unit=str(labs_units.loc[thisLab][0])))
        thisCPLab.scalarDistribution.min = round(float(labs_stats.loc[thisLab]['min'].min()),3)
        thisCPLab.scalarDistribution.max = round(float(labs_stats.loc[thisLab]['max'].max()),3)
        thisCPLab.scalarDistribution.mean = round(float(labs_stats.loc[thisLab]['mean'].mean()),3)
        thisCPLab.scalarDistribution.median = round(float(labs_stats.loc[thisLab]['median'].median()),3)
        thisCPLab.scalarDistribution.stdDev = round(float(labs_stats.loc[thisLab]['std'].median()),3)
        deciles = list()
        for dec in labs_stats.columns[5:]:
            deciles.append(clinicalprofile.ClinicalProfileLabScalarDistributionDecile(
                                                                dict(nth=int(dec), 
                                                                    value=round(labs_stats.loc[thisLab][dec].mean(),3))))
        thisCPLab.scalarDistribution.decile = deciles

        thisCPLab.scalarDistribution.fractionAboveNormal = round(float(labs_aboveBelowNorm.loc[thisLab].aboveNorm.mean()),3)
        thisCPLab.scalarDistribution.fractionBelowNormal = round(float(labs_aboveBelowNorm.loc[thisLab].belowNorm.mean()),3)

        try:
            yearly_vals = dict()
            for year in corrmat.loc[thisLab].index:
                crosstab = corrmat.loc[(thisLab, year)]
                yearly_vals[year] = (crosstab[crosstab.index.get_level_values(level=1).astype('float') == year]
                                             .droplevel(level=1))

            topNcorrs = pd.DataFrame(yearly_vals).apply(np.mean, axis=1).drop(thisLab).nlargest(topN).round(3)

            entries = list()
            for code, corr in topNcorrs.iteritems():
                if  corr <= correlationCutoff:
                    continue
                otherLoinc = [(dict(coding=[dict(system='http://loinc.org', code=code)],
                                                                  text=str(lab_info.loc[code]['lab_name'][0])))]
                entries.append(dict(labcode=otherLoinc, coefficient=corr))

            if not entries:
                print('No correlated Labs for Lab ', thisLab)
            else:
                thisCPLab.scalarDistribution.correlatedLabs = clinicalprofile.ClinicalProfileLabScalarDistributionCorrelatedLabs(
                                                                dict(topn=topN, 
                                                                     entry=entries))
        except:
            print('No correlated Labs for Lab ', thisLab)

        try:
            topNcorrs = (pd.DataFrame(labs_correlatedMedsCoefficients.loc[thisLab].groupby(['JH_INGREDIENT_RXNORM_CODE'])
                                                                                .Relative_Counts.mean())
                                                                                .Relative_Counts.nlargest(topN).round(3))
            entries = list()
            for code, corr in topNcorrs.iteritems():
                if  corr <= correlationCutoff:
                    continue
                otherRX = [dict(medicationCodeableConcept=dict(coding=
                    [dict(system='http://www.nlm.nih.gov/research/umls/rxnorm/', code=code)]))]
                entries.append(dict(meds=otherRX, coefficient=corr))

            if not entries:
                print('No correlated Meds for Lab ', thisLab)
            else:
                thisCPLab.scalarDistribution.correlatedMedications = clinicalprofile.\
                                        ClinicalProfileLabScalarDistributionCorrelatedMedications(
                                                                        dict(topn=topN, 
                                                                          entry=entries))
        except:
            print('No correlated Meds for Lab ', thisLab)

        try:
            topNcorrs = (pd.DataFrame(labs_correlatedDiagnosisCoefficients.loc[thisLab].groupby(['DX'])
                                                                                .Relative_Counts.mean())
                                                                                .Relative_Counts.nlargest(topN).round(3))
            entries = list()
            for code, corr in topNcorrs.iteritems():
                if  corr <= correlationCutoff:
                    continue
                otherDX = (dict(coding=[dict(system='http://www.icd10data.com/', code=code)]))
                entries.append(dict(code=otherDX, coefficient=corr))

            if not entries:
                print('No correlated Diagnoses for Lab ', thisLab)
            else:
                thisCPLab.scalarDistribution.correlatedDiagnoses = clinicalprofile.\
                                                            ClinicalProfileLabScalarDistributionCorrelatedDiagnoses(
                                                                    dict(topn=topN, 
                                                                      entry=entries))
        except:
            print('No correlated Diagnoses for Lab ', thisLab)

        try:      
            topNcorrs = (pd.DataFrame(labs_correlatedProceduresCoefficients.loc[thisLab].groupby(['RAW_PX'])
                                                                                .Relative_Counts.mean())
                                                                                .Relative_Counts.nlargest(topN).round(3))
            entries = list()
            for code, corr in topNcorrs.iteritems():
                if  corr <= correlationCutoff:
                    continue
                otherProc = [(dict(coding=[dict(system='http://www.ama-assn.org/practice-management/cpt', code=code)]))]
                entries.append(dict(code=otherProc, coefficient=corr))

            if not entries:
                print('No correlated Procedures for Lab ', thisLab)
            else:
                thisCPLab.scalarDistribution.correlatedProcedures = clinicalprofile.\
                                                            ClinicalProfileLabScalarDistributionCorrelatedProcedures(
                                                                    dict(topn=topN, 
                                                                      entry=entries))
        except:
            print('No correlated Procedures for Lab ', thisLab)

        try:      
            topNcorrs = (pd.DataFrame(labs_correlatedPhenotypesCoefficients.loc[thisLab].groupby(['HPO'])
                                                                                .Relative_Counts.mean())
                                                                                .Relative_Counts.nlargest(topN).round(3))
            entries = list()
            for code, corr in topNcorrs.iteritems():
                if  corr <= correlationCutoff:
                    continue
                otherHPO = (dict(coding=[dict(system='http://hpo.jax.org/app/', code=code)]))
                entries.append(dict(code=otherHPO, coefficient=corr))

            if not entries:
                print('No correlated Phenotypes for Lab ', thisLab)
            else:
                thisCPLab.scalarDistribution.correlatedPhenotypes = clinicalprofile.\
                                                            ClinicalProfileLabScalarDistributionCorrelatedPhenotypes(
                                                                    dict(topn=topN, 
                                                                      entry=entries))
        except:
            print('No correlated Phenotypes for Lab ', thisLab)

        labs.append(thisCPLab)
        
#         except:
#             print('This lab did not work ', thisLab)
        
    clinicalProfile.lab = labs

    if age_high != None:
        filename = cohort+'_resources/jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(int(age_low))+'-'+str(int(age_high))+'.json'
    else:
        filename = cohort+'_resources/jh-labs-'+cohort+'-'+sex+'-'+race+'-'+str(age_low)+'.json'
        
    with open(filename, 'w') as outfile:
        json.dump(clinicalProfile.as_json(), outfile, indent=4)
    
    del(clinicalProfile)
    return print('Write to '+ filename + ' successful')
Esempio n. 30
0
 def add_regionstudied_obv(self, ref_seq, reportable_query_regions,
                           nocall_regions):
     if reportable_query_regions.empty and nocall_regions.empty:
         return
     patient_reference = reference.FHIRReference(
         {"reference": "Patient/" + self.patientID})
     contained_uid = "rs-" + uuid4().hex[:13]
     self.result_ids.append(contained_uid)
     # Region Studied Obeservation
     observation_rs = observation.Observation()
     contained_rs = observation_rs
     contained_rs.id = contained_uid
     observation_rs.resource_type = "Observation"
     contained_rs.meta = meta.Meta({
         "profile": [("http://hl7.org/fhir/uv/" + "genomics-reporting/" +
                      "StructureDefinition/region-studied")]
     })
     observation_rs.code = concept.CodeableConcept({
         "coding": [{
             "system": "http://loinc.org",
             "code": "53041-0",
             "display": "DNA region of interest panel"
         }]
     })
     observation_rs.status = "final"
     observation_rs.category = [
         concept.CodeableConcept({
             "coding": [{
                 "system": ("http://terminology.hl7.org/" +
                            "CodeSystem/observation-category"),
                 "code":
                 "laboratory"
             }]
         })
     ]
     observation_rs.subject = patient_reference
     observation_rs_component2 = observation.ObservationComponent()
     observation_rs_component2.code = concept.CodeableConcept({
         "coding": [{
             "system": "http://loinc.org",
             "code": "92822-6",
             "display": "Genomic coord system"
         }]
     })
     observation_rs_component2\
         .valueCodeableConcept = concept.CodeableConcept(
             {
                 "coding": [
                     {
                         "system": "http://loinc.org",
                         "code": "LA30102-0",
                         "display": "1-based character counting"
                     }
                 ]
             }
         )
     observation_rs_component3 = observation.ObservationComponent()
     observation_rs_component3.code = concept.CodeableConcept({
         "coding": [{
             "system": "http://loinc.org",
             "code": "48013-7",
             "display": "Genomic reference sequence ID"
         }]
     })
     observation_rs_component3\
         .valueCodeableConcept = concept.CodeableConcept(
             {
                 "coding": [
                     {
                         "system": "http://www.ncbi.nlm.nih.gov/nuccore",
                         "code": ref_seq
                     }
                 ]
             }
         )
     observation_rs_components = self._get_region_studied_component(
         reportable_query_regions, nocall_regions)
     observation_rs.component = [
         observation_rs_component2, observation_rs_component3
     ] + observation_rs_components
     # Observation structure : described-variants
     self.report.contained.append(contained_rs)