def predict_average(self):

        y_lst = []
        for i_fold in range(6):
            for k in range(18, 19 + 1):
                for epoch in range(99, 100 + 1):

                    y = self.predict(i_fold=i_fold, k=k, epoch=epoch)
                    y_lst.append(y)
        y_avg = np.mean(y_lst, axis=0)

        y_avg_bin = self.get_bin(y_avg)

        img_clean = self.img_x[..., :3]

        y_avg_bin_overlay = semi_transparant(img_clean, y_avg_bin)

        concurrent([y_avg[..., 1], y_avg_bin, y_avg_bin_overlay, img_clean])

        if 0:
            path_save = f'/scratch/lameeus/data/ghent_altar/output/hierarchy/10_lamb/' \
                        f'paintloss_tiunet_enc{self.fixed_enc}.png'
            imsave(path_save, y_avg_bin)
        if 1:
            path_save = f'/scratch/lameeus/data/ghent_altar/output/hierarchy/10_lamb/' \
                        f'paintloss_overlay_tiunet_enc{self.fixed_enc}.png'
            imsave(path_save, y_avg_bin_overlay)

        return 1
Esempio n. 2
0
def folds_annot():
    train_data = get_10lamb_old(5)
    img_x, _, _, _ = get_training_data(train_data)
    
    img_clean = img_x[..., :3]

    lst_get = [get_borders1, get_borders2, get_borders3, get_borders4, get_borders5, get_borders6]

    for i_fold in range(6):
        
        img_annot = imread(f'/home/lameeus/data/ghent_altar/input/hierachy/10_lamb/annotations/kfold/annot_{i_fold+1}.png')

        y1 = annotations2y(img_annot, thresh=.8)[..., 1]

        a = semi_transparant(img_clean, y1.astype(bool))
    
        w0, w1, h0, h1 = lst_get[i_fold]()
        clean_annot_crop = a[h0:h1, w0:w1, :]

        img_clean_crop = img_clean[h0:h1, w0:w1, :]
        
        if 0: concurrent([img_clean_crop, clean_annot_crop])
        
        folder_save = '/scratch/lameeus/data/ghent_altar/input/hierarchy/10lamb/ifolds'

        imsave(os.path.join(folder_save, f'clean_crop_ifold{i_fold}.png'), img_clean_crop)
        imsave(os.path.join(folder_save, f'clean_annot_crop_ifold{i_fold}.png'), clean_annot_crop)
        
        pass
Esempio n. 3
0
def continues_learning():
    folder = '/home/lameeus/data/ghent_altar/input/hierarchy/13_small'
    im_clean = imread(os.path.join(folder, 'clean.png'))[..., :3]
    im_annot0 = imread(os.path.join(folder, 'annot.tif'))
    im_annot1 = imread(os.path.join(folder, 'clean_annot_practical.png'))

    y_true = annotations2y(im_annot0)
    y_true_extra = annotations2y(im_annot1, thresh=.9)
    
    folder = '/home/lameeus/data/ghent_altar/output/hierarchy/13_small/practical_annotations'
    y_pred0 = imread(os.path.join(folder, 'pred_transfer_kfoldenc2_ifold0_avg.png'))
    
    folder = '/home/lameeus/data/ghent_altar/output/hierarchy/13_small'
    y_pred1 = imread(os.path.join(folder, 'pred_transfer_kfoldenc2_ifold0_avg_epoch50_J0427.png'))
    
    from performance.testing import optimal_test_thresh_equal_distribution
    from scripts.scripts_performance.main_performance import foo_performance
    from figures_paper.overlay import semi_transparant
    def get_bin(y_pred):

        assert len(y_pred.shape) == 2
        y_pred01 = np.stack([1-y_pred, y_pred], axis=-1)
        thresh = optimal_test_thresh_equal_distribution(y_true, y_pred01)

        print(foo_performance(y_true, y_pred01, thresh))

        y_pred_bin = y_pred >= thresh
        
        return y_pred_bin

    y_pred0_bin = get_bin(y_pred0)
    y_pred1_bin = get_bin(y_pred1)

    y_pred0_bin_fancy = semi_transparant(im_clean, y_pred0_bin)
    y_pred1_bin_fancy = semi_transparant(im_clean, y_pred1_bin)
    
    concurrent([im_clean, y_true[..., 0], y_true_extra[..., 0], y_pred0, y_pred1, y_pred0_bin, y_pred1_bin,
                y_pred0_bin_fancy,
                y_pred1_bin_fancy])
    
    folder_save = '/home/lameeus/data/ghent_altar/output/hierarchy/13_small/fancy'
    imsave(os.path.join(folder_save, 'overalytrain10.png'), y_pred0_bin_fancy)
    imsave(os.path.join(folder_save, 'overalytrain10train13.png'), y_pred1_bin_fancy)
    
    return
    def predict_compare_regular(self):

        img_y_all = self.k_fold_train_data.get_train_data_all().get_y_train()
        lst_get = [
            get_borders1, get_borders2, get_borders3, get_borders4,
            get_borders5, get_borders6
        ]
        img_clean = self.img_x[..., :3]

        for i_fold in range(6):

            y_lst = []
            # Average prediction
            print(f'i_fold = {i_fold}')
            for k in [17, 18, 19]:
                print(f'k = {k}')
                for epoch in [36, 37, 38, 39, 40]:
                    print(f'epoch = {epoch}')
                    y = self.predict_regular(i_fold=i_fold, k=k, epoch=epoch)
                    y_lst.append(y)

            y_avg = np.mean(y_lst, axis=0)
            y_avg_bin = self.get_bin(y_avg)

            # Performance
            img_y_te = self.k_fold_train_data.k_split_i(i_fold).get_y_test()

            thresh = optimal_test_thresh_equal_distribution(img_y_all, y_avg)

            perf = foo_performance(img_y_te, y_avg, thresh)

            # CROP

            w0, w1, h0, h1 = lst_get[i_fold]()

            y_avg_bin_crop = y_avg_bin[h0:h1, w0:w1]
            clean_crop = img_clean[h0:h1, w0:w1, :]

            y_avg_bin_transparent_crop = semi_transparant(
                clean_crop, y_avg_bin_crop)
            if 0:
                concurrent(
                    [clean_crop, y_avg_bin_crop, y_avg_bin_transparent_crop])

            folder_save = '/scratch/lameeus/data/ghent_altar/output/hierarchy/10_lamb/ifolds_regular_tiunet'
            filename = f'_tiunet_ifold{i_fold}_jacc{perf["jaccard"]:.3f}.png'
            # Save y_bin

            imsave(os.path.join(folder_save, 'binpred' + filename),
                   y_avg_bin_crop,
                   b_check_duplicate=False)

            # Save overlay
            imsave(os.path.join(folder_save, 'overlay' + filename),
                   y_avg_bin_transparent_crop,
                   b_check_duplicate=False)
Esempio n. 5
0
def combine_stitches():
    
    folder = '/home/lameeus/data/ghent_altar/output/hierarchy/10_lamb/inpainting'
    im_base = imread(os.path.join(folder, 'inpainting_stitch_f2_g3_fixed_v0_linear_c256.png'))
    im_leftbot = imread(os.path.join(folder, 'inpainting_stitch_f2_g3_fixed_v1_linear_c256_manual.png'))
    
    im_base[3*256:, :(3)*256, :] = im_leftbot[3*256:, :(3)*256, :]
    
    if 0:
        plt.imshow(im_base)
        imsave(os.path.join(folder, 'inpainting_comb.png'), im_base)

    from figures_paper.overlay import semi_transparant
    im_clean = imread('/home/lameeus/data/ghent_altar/input/hierarchy/10_lamb/clean.png')
    im_paintloss = imread('/home/lameeus/data/ghent_altar/output/hierarchy/10_lamb/detection_updated.png')
    im_overlay = semi_transparant(im_clean, im_paintloss)

    if 1:
        plt.imshow(im_overlay)
        folder = '/home/lameeus/data/ghent_altar/output/hierarchy/10_lamb/fancy'
        imsave(os.path.join(folder, 'det_overlay.png'), im_overlay)
        def foo(n_segm, b=0):
            y_pred = n_segm.predict(self.img_x)

            thresh_single = optimal_test_thresh_equal_distribution(
                self.img_y_te, y_pred)
            # data_single_i = {'k': self.k,
            #                  'i_fold': i_fold,
            #                  'epoch': epoch}
            print(foo_performance(self.img_y_te, y_pred, thresh_single))

            img_clean = self.img_x[..., :3]
            concurrent([
                img_clean, y_pred[..., 1], y_pred[..., 1] >= thresh_single,
                semi_transparant(img_clean, y_pred[..., 1] >= thresh_single)
            ])

            if b:
                from data.datatools import imsave

                folder = '/home/lameeus/data/ghent_altar/output/hierarchy/'
                info_epoch = f'_epoch{n_segm.epoch}' if n_segm.epoch > 0 else ''
                filename = folder + f'13_small/pred_transfer_kfoldenc{self.fixed_enc}_ifold{self.i_fold}_avg{info_epoch}.png'
                imsave(filename, y_pred[..., 1])
    def predict_compare(self):

        img_y_all = self.k_fold_train_data.get_train_data_all().get_y_train()
        lst_get = [
            get_borders1, get_borders2, get_borders3, get_borders4,
            get_borders5, get_borders6
        ]
        img_clean = self.img_x[..., :3]

        for i_fold in range(6):
            for i_fixed_enc in range(3):
                self.fixed_enc = i_fixed_enc

                y_lst = []
                # Average prediction
                for k in [17, 18, 19]:
                    for epoch in [96, 97, 98, 99, 100]:

                        y = self.predict(i_fold=i_fold, k=k, epoch=epoch)
                        y_lst.append(y)

                y_avg = np.mean(y_lst, axis=0)
                y_avg_bin = self.get_bin(y_avg)

                # Performance
                img_y_te = self.k_fold_train_data.k_split_i(
                    i_fold).get_y_test()

                thresh = optimal_test_thresh_equal_distribution(
                    img_y_all, y_avg)

                perf = foo_performance(img_y_te, y_avg, thresh)

                # CROP

                w0, w1, h0, h1 = lst_get[i_fold]()

                y_avg_bin_crop = y_avg_bin[h0:h1, w0:w1]
                clean_crop = img_clean[h0:h1, w0:w1, :]

                y_avg_bin_transparent_crop = semi_transparant(
                    clean_crop, y_avg_bin_crop)
                if 0:
                    concurrent([
                        clean_crop, y_avg_bin_crop, y_avg_bin_transparent_crop
                    ])

                # Save
                if self.fixed_enc == 0: info_enc = 'Train'
                elif self.fixed_enc == 1: info_enc = 'Fixed'
                elif self.fixed_enc == 2: info_enc = 'FixedTrain'

                folder_save = '/scratch/lameeus/data/ghent_altar/output/hierarchy/10_lamb/ifolds'
                filename = f'_enc{info_enc}_ifold{i_fold}_jacc{perf["jaccard"]:.3f}.png'
                # Save y_bin

                imsave(os.path.join(folder_save, 'binpred' + filename),
                       y_avg_bin_crop,
                       b_check_duplicate=False)

                # Save overlay
                imsave(os.path.join(folder_save, 'overlay' + filename),
                       y_avg_bin_transparent_crop,
                       b_check_duplicate=False)
Esempio n. 8
0
def main():

    b_encoder_fixed = False
    info_enc_fixed = '_enc_fixed'

    folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight/10lamb_kfold_pretrained'
    folder_save = '/home/lameeus/data/ghent_altar/dataframes'
    filename_single = f'pretrained_unet_10lamb_kfold_single'
    filename_avg_pred = f'pretrained_unet_10lamb_kfold_avgpred'
    folder_weights += info_enc_fixed if b_encoder_fixed else ''
    filename_single += info_enc_fixed if b_encoder_fixed else ''
    filename_avg_pred += info_enc_fixed if b_encoder_fixed else ''

    fold_range = range(6)
    # fold_range = [0, 1]

    k = 10
    epoch_range = range(1, 40 + 1)

    w_ext_in = 28

    k_fold_train_data = get_10lamb_6patches(5)  # 5 is the number of modalities
    train_data_all = k_fold_train_data.get_train_data_all()
    img_x = train_data_all.get_x_train()
    img_x = rescale0to1(img_x)
    img_clean = img_x[..., :3]
    img_y_all = train_data_all.get_y_train()

    b_plot = False

    for i_fold in fold_range:

        print(i_fold)

        img_y_te = k_fold_train_data.k_split_i(i_fold).get_y_test()

        # Init for range epochs
        lst_data_single = []
        lst_data_avg_pred = []
        list_y_pred = []
        model = None

        for epoch in np.sort(epoch_range)[::-1]:

            filepath_model = os.path.join(
                folder_weights, f'unet_enc_k{k}_ifold{i_fold}/w_{epoch}.h5')

            model = load_model_quick(filepath_model, model=model)
            n = NeuralNet(model, w_ext=w_ext_in)
            y_pred = n.predict(img_x)
            """
            Average out predictions
            """
            list_y_pred.append(y_pred)
            y_avg_pred = np.mean(list_y_pred, axis=0)

            thresh_single = optimal_test_thresh_equal_distribution(
                img_y_all, y_pred)
            thresh_avg_pred = optimal_test_thresh_equal_distribution(
                img_y_all, y_avg_pred)

            y_pred_bin = np.greater_equal(y_pred[..., 1], thresh_single)

            dict_perf = foo_performance(img_y_te, y_pred, thresh_single)
            print(dict_perf)

            if b_plot:
                concurrent([
                    y_pred_bin, img_clean,
                    semi_transparant(img_clean, y_pred_bin),
                    semi_transparant(img_clean, img_y_te[..., 1].astype(bool))
                ])

            data_single_i = {'k': k, 'i_fold': i_fold, 'epoch': epoch}
            data_avg_pred_i = {
                'k': k,
                'i_fold': i_fold,
                'epoch_start': epoch,
                'epoch_end': max(epoch_range)
            }

            data_single_i.update(dict_perf)
            data_avg_pred_i.update(
                foo_performance(img_y_te, y_avg_pred, thresh_avg_pred))

            lst_data_single.append(data_single_i)
            lst_data_avg_pred.append(data_avg_pred_i)

        df_single = pd.DataFrame(lst_data_single)
        df_avg_pred = pd.DataFrame(lst_data_avg_pred)

        path_single = os.path.join(folder_save, filename_single + '.csv')
        path_avg_pred = os.path.join(folder_save, filename_avg_pred + '.csv')

        pandas_save(path_single, df_single, append=True)
        pandas_save(path_avg_pred, df_avg_pred, append=True)

    return
def transfer_learning(
        epoch=25,  # Could check a few
        b_plot=False):

    d = 2  # 1, 2

    img_x, img_y_val = data_lamb()

    k = 10

    model_name = 'ti-unet'

    w_ext = 10 if d == 1 else 26

    # train_data:
    y_pred_lst = []
    n = ['clean']

    # train_data_lst = ['1319_10', '10', '1319', '1319_101319']
    train_data_lst = ['10nat', '1319_10nat', '1319_10nat1319', '1319']

    data_i_lst = {}

    for train_data in train_data_lst:
        print(train_data)

        epoch_start = 50
        epoch_corr = epoch + epoch_start if train_data[:5] == '1319_' else epoch
        if train_data == '1319':
            epoch_corr = 50
        path = f'C:/Users/admin/Data/ghent_altar/net_weight/{train_data}/{model_name}_d{d}_k{k}/w_{epoch_corr}.h5'

        try:
            model = load_model_quick(path)
        except Exception as e:
            print(e)
            continue

        neural_net = NeuralNet(model, w_ext=w_ext, norm_x=True)

        y_pred = neural_net.predict(img_x)

        # baseline
        data_i = _eval_func_single(img_y_val, y_pred, metric='kappa')
        print(data_i)

        if 0:
            """
            Checking which 
            
            baseline ~ .22
            i = 0: .268, Remove huge improvement  ( a lot of "green" background annotated as paint loss)
            i = 1: .228 Keep!
            i = 2: .179 keep! Drop (keep!!
            i = 3: .159 keep! Even more important
            i = 4: .252 Remove (huge problem right top)
            i = 5: .233 Keep, quit relevant
            """

            from datasets.default_trainingsets import get_10lamb_6patches
            kFoldTrainData = get_10lamb_6patches(5)

            _eval_func_single(
                kFoldTrainData.k_split_i(0).get_y_train(),
                y_pred,
                metric='kappa')  # Check what is influence without!

        data_i_lst[train_data] = data_i

        data_i = _eval_func_single(img_y_val, y_pred, metric='jaccard')
        print(data_i)

        y_pred_lst.append(y_pred)
        n.append(train_data)

    # plt.imshow(neural_net.predict(img_x[::2,::2,:])[..., 1])

    if b_plot:
        concurrent([img_x[..., :3]] + [a[..., 1] for a in y_pred_lst], n)

    if 0:
        from figures_paper.overlay import semi_transparant
        from data.datatools import imread, imsave

        t = [data_i_lst[n_i]['thresh'] for n_i in train_data_lst]
        p = []
        for i, train_data in enumerate(train_data_lst):
            b = np.greater_equal(y_pred_lst[i][..., 1], t[i])

            k = semi_transparant(img_x[..., :3], b, 0)
            p.append(k)

            imsave(
                os.path.join(
                    "C:/Users/admin/OneDrive - ugentbe/data/images_paper",
                    train_data + '.png'), k)

        concurrent(p)

    return data_i_lst
        print(data_i)

    # Show before saving all

    from figures_paper.overlay import semi_transparant

    l = [im_clean]

    for i, b in enumerate([b_annot, b_sh, b_pred, b_pred_unet]):

        if i == 0:
            # Probably not really interesting to change the colour
            l.append(
                semi_transparant(im_clean,
                                 b.astype(bool),
                                 color1='cyan',
                                 color2='grey',
                                 transparency=0,
                                 transparancy2=.5))
        else:
            l.append(
                semi_transparant(im_clean,
                                 b.astype(bool),
                                 color2='grey',
                                 transparency=0,
                                 transparancy2=.5))

    concurrent(l)

    folder_out = 'C:/Users/admin/OneDrive - ugentbe/data/images_paper'
    imsave(os.path.join(folder_out, f'{data}_clean.png'), im_clean)
    imsave(os.path.join(folder_out, f'{data}_annot.png'), l[1])