# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', 10, True)
settings.addSpotFilter(filter2)
filter3 = FeatureFilter('MEDIAN_INTENSITY', 10, True)
settings.addSpotFilter(filter3)
filter4 = FeatureFilter('SNR', 0.5, True)
settings.addSpotFilter(filter4)

# Add an analyzer for some track features, such as the track mean speed.
settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
settings.addTrackAnalyzer(TrackDurationAnalyzer())

filter5 = FeatureFilter('TRACK_DISPLACEMENT', 5, True)
settings.addTrackFilter(filter5)

settings.initialSpotFilterValue = 1

print(str(settings))

#----------------------
# Instantiate trackmate
#----------------------

trackmate = TrackMate(model, settings)
Esempio n. 2
0
def magic(file):
    # We have to feed a logger to the reader.
    logger = Logger.IJ_LOGGER

    #-------------------
    # Instantiate reader
    #-------------------

    reader = TmXmlReader(File(file))
    if not reader.isReadingOk():
        sys.exit(reader.getErrorMessage())
    #-----------------
    # Get a full model
    #-----------------

    # This will return a fully working model, with everything
    # stored in the file. Missing fields (e.g. tracks) will be
    # null or None in python
    model = reader.getModel()
    # model is a fiji.plugin.trackmate.Model

    #model = Model()
    #model.setSpots(model2.getSpots(), True)

    #----------------
    # Display results
    #----------------

    # We can now plainly display the model. It will be shown on an
    # empty image with default magnification.
    sm = SelectionModel(model)
    #displayer = HyperStackDisplayer(model, sm)
    #displayer.render()

    #---------------------------------------------
    # Get only part of the data stored in the file
    #---------------------------------------------

    # You might want to access only separate parts of the
    # model.

    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))

    # If you want to get the tracks, it is a bit trickier.
    # Internally, the tracks are stored as a huge mathematical
    # simple graph, which is what you retrieve from the file.
    # There are methods to rebuild the actual tracks, taking
    # into account for everything, but frankly, if you want to
    # do that it is simpler to go through the model:

    #---------------------------------------
    # Building a settings object from a file
    #---------------------------------------

    # Reading the Settings object is actually currently complicated. The
    # reader wants to initialize properly everything you saved in the file,
    # including the spot, edge, track analyzers, the filters, the detector,
    # the tracker, etc...
    # It can do that, but you must provide the reader with providers, that
    # are able to instantiate the correct TrackMate Java classes from
    # the XML data.

    # We start by creating an empty settings object
    settings = Settings()

    # Then we create all the providers, and point them to the target model:
    detectorProvider        = DetectorProvider()
    trackerProvider         = TrackerProvider()
    spotAnalyzerProvider    = SpotAnalyzerProvider()
    edgeAnalyzerProvider    = EdgeAnalyzerProvider()
    trackAnalyzerProvider   = TrackAnalyzerProvider()

    # Ouf! now we can flesh out our settings object:
    reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider, edgeAnalyzerProvider, trackAnalyzerProvider)
    settings.detectorFactory = ManualDetectorFactory()


    # Configure tracker - We want to allow merges and fusions
    settings.initialSpotFilterValue = 0
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 40.0
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = True
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 30.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 4

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(LinearTrackDescriptor())
    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter2 = FeatureFilter('NUMBER_SPOTS', 31, True)
    settings.addTrackFilter(filter2)
    #filter3 = FeatureFilter('NUMBER_GAPS', 2, False)
    #settings.addTrackFilter(filter3)
    filter4 = FeatureFilter('NUMBER_SPLITS', 0.5, False)
    settings.addTrackFilter(filter4)


    settings.addEdgeAnalyzer(EdgeTargetAnalyzer())
    settings.addEdgeAnalyzer(EdgeTimeLocationAnalyzer())
    settings.addEdgeAnalyzer(EdgeVelocityAnalyzer())
    settings.addEdgeAnalyzer(LinearTrackEdgeStatistics())

    #-------------------
    # Instantiate plugin
    #-------------------
    logger.log(str('\n\nSETTINGS:'))
    logger.log(unicode(settings))
    print("tracking")
    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))
    logger.log(str(spots.keySet()))


    # The settings object is also instantiated with the target image.
    # Note that the XML file only stores a link to the image.
    # If the link is not valid, the image will not be found.
    #imp = settings.imp
    #imp.show()

    # With this, we can overlay the model and the source image:

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    trackmate.execInitialSpotFiltering()
    trackmate.execSpotFiltering(True)
    trackmate.execTracking()
    trackmate.computeTrackFeatures(True)
    trackmate.execTrackFiltering(True)
    trackmate.computeEdgeFeatures(True)

    outfile = TmXmlWriter(File(str(file[:-4] + ".trackmate.xml")))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    ISBIChallengeExporter.exportToFile(model, settings, File(str(file[:-4] + ".ISBI.xml")))
Esempio n. 3
0
def runTrackMate(imp):
    import fiji.plugin.trackmate.Settings as Settings
    import fiji.plugin.trackmate.Model as Model
    import fiji.plugin.trackmate.SelectionModel as SelectionModel
    import fiji.plugin.trackmate.TrackMate as TrackMate
    import fiji.plugin.trackmate.Logger as Logger
    import fiji.plugin.trackmate.detection.DetectorKeys as DetectorKeys
    import fiji.plugin.trackmate.detection.DogDetectorFactory as DogDetectorFactory
    import fiji.plugin.trackmate.tracking.sparselap.SparseLAPTrackerFactory as SparseLAPTrackerFactory
    import fiji.plugin.trackmate.tracking.LAPUtils as LAPUtils
    import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
    import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter
    import fiji.plugin.trackmate.features.FeatureAnalyzer as FeatureAnalyzer
    import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzerFactory as SpotContrastAndSNRAnalyzerFactory
    import fiji.plugin.trackmate.action.ExportStatsToIJAction as ExportStatsToIJAction
    import fiji.plugin.trackmate.io.TmXmlReader as TmXmlReader
    import fiji.plugin.trackmate.action.ExportTracksToXML as ExportTracksToXML
    import fiji.plugin.trackmate.io.TmXmlWriter as TmXmlWriter
    import fiji.plugin.trackmate.features.ModelFeatureUpdater as ModelFeatureUpdater
    import fiji.plugin.trackmate.features.SpotFeatureCalculator as SpotFeatureCalculator
    import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzer as SpotContrastAndSNRAnalyzer
    import fiji.plugin.trackmate.features.spot.SpotIntensityAnalyzerFactory as SpotIntensityAnalyzerFactory
    import fiji.plugin.trackmate.features.track.TrackSpeedStatisticsAnalyzer as TrackSpeedStatisticsAnalyzer
    import fiji.plugin.trackmate.util.TMUtils as TMUtils
    import fiji.plugin.trackmate.visualization.trackscheme.TrackScheme as TrackScheme
    import fiji.plugin.trackmate.visualization.PerTrackFeatureColorGenerator as PerTrackFeatureColorGenerator

    #-------------------------
    # Instantiate model object
    #-------------------------

    nFrames = imp.getNFrames()
    model = Model()

    # Set logger
    #model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
        DetectorKeys.KEY_RADIUS: 12.30,
        DetectorKeys.KEY_TARGET_CHANNEL: 1,
        DetectorKeys.KEY_THRESHOLD: 100.,
        DetectorKeys.KEY_DO_MEDIAN_FILTERING: False,
    }

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 10.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 10.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 3

    # Add the analyzers for some spot features.
    # You need to configure TrackMate with analyzers that will generate
    # the data you need.
    # Here we just add two analyzers for spot, one that computes generic
    # pixel intensity statistics (mean, max, etc...) and one that computes
    # an estimate of each spot's SNR.
    # The trick here is that the second one requires the first one to be in
    # place. Be aware of this kind of gotchas, and read the docs.
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

    # Add an analyzer for some track features, such as the track mean speed.
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    settings.initialSpotFilterValue = 1

    print(str(settings))

    #----------------------
    # Instantiate trackmate
    #----------------------

    trackmate = TrackMate(model, settings)

    #------------
    # Execute all
    #------------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    selectionModel = SelectionModel(model)
    displayer = HyperStackDisplayer(model, selectionModel, imp)
    displayer.render()
    displayer.refresh()

    #---------------------
    # Select correct spots
    #---------------------

    # Prepare display.
    sm = SelectionModel(model)
    color = PerTrackFeatureColorGenerator(model, 'TRACK_INDEX')

    # launch TrackScheme to select spots and tracks
    trackscheme = TrackScheme(model, sm)
    trackscheme.setDisplaySettings('TrackColoring', color)
    trackscheme.render()

    # Update image with TrackScheme commands
    view = HyperStackDisplayer(model, sm, imp)
    view.setDisplaySettings('TrackColoring', color)
    view.render()

    # Wait for the user to select correct spots and tracks before collecting data
    dialog = WaitForUserDialog(
        "Spots",
        "Delete incorrect spots and edit tracks if necessary. (Press ESC to cancel analysis)"
    )
    dialog.show()
    if dialog.escPressed():
        IJ.run("Remove Overlay", "")
        imp.close()
        return ([], nFrames)

    # The feature model, that stores edge and track features.
    #model.getLogger().log('Found ' + str(model.getTrackModel().nTracks(True)) + ' tracks.')
    fm = model.getFeatureModel()
    crds_perSpot = []
    for id in model.getTrackModel().trackIDs(True):

        # Fetch the track feature from the feature model.(remove """ to enable)
        """v = fm.getTrackFeature(id, 'TRACK_MEAN_SPEED')
	    model.getLogger().log('')
	    model.getLogger().log('Track ' + str(id) + ': mean velocity = ' + str(v) + ' ' + model.getSpaceUnits() + '/' + model.getTimeUnits())"""
        trackID = str(id)
        track = model.getTrackModel().trackSpots(id)

        spot_track = {}
        for spot in track:
            sid = spot.ID()
            # Fetch spot features directly from spot.
            x = spot.getFeature('POSITION_X')
            y = spot.getFeature('POSITION_Y')
            t = spot.getFeature('FRAME')
            q = spot.getFeature('QUALITY')
            snr = spot.getFeature('SNR')
            mean = spot.getFeature('MEAN_INTENSITY')
            #model.getLogger().log('\tspot ID = ' + str(sid) + ', x='+str(x)+', y='+str(y)+', t='+str(t)+', q='+str(q) + ', snr='+str(snr) + ', mean = ' + str(mean))
            spot_track[t] = (x, y)
        crds_perSpot.append(spot_track)
        #print ("Spot", crds_perSpot.index(spot_track),"has the following coordinates:", crds_perSpot[crds_perSpot.index(spot_track)])
    return (crds_perSpot, nFrames)
Esempio n. 4
0
def process(srcDir, dstDir, currentDir, fileName, keepDirectories):
    print "Processing:"

    # Opening the image
    print "Open image file", fileName
    imp = IJ.openImage(os.path.join(currentDir, fileName))

    #Here we make sure the calibration are correct
    units = "pixel"
    TimeUnit = "unit"

    newCal = Calibration()
    newCal.pixelWidth = 1
    newCal.pixelHeight = 1
    newCal.frameInterval = 1

    newCal.setXUnit(units)
    newCal.setYUnit(units)
    newCal.setTimeUnit(TimeUnit)
    imp.setCalibration(newCal)
    cal = imp.getCalibration()

    dims = imp.getDimensions()  # default order: XYCZT

    if (dims[4] == 1):
        imp.setDimensions(1, 1, dims[3])

# Start the tracking

    model = Model()

    #Read the image calibration
    model.setPhysicalUnits(cal.getUnit(), cal.getTimeUnit())

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DownsampleLogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_RADIUS: 2.,
        DetectorKeys.KEY_DOWNSAMPLE_FACTOR: 2,
        DetectorKeys.KEY_THRESHOLD: 1.,
    }

    print(settings.detectorSettings)

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
    settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    filter2 = FeatureFilter('TRACK_DISPLACEMENT', 10, True)
    settings.addTrackFilter(filter2)

    #-------------------
    # Instantiate plugin
    #-------------------
    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

#----------------
# Display results
#----------------
    if showtracks:
        model.getLogger().log('Found ' +
                              str(model.getTrackModel().nTracks(True)) +
                              ' tracks.')
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()


# The feature model, that stores edge and track features.
    fm = model.getFeatureModel()

    with open(dstDir + fileName + 'tracks_properties.csv', "w") as file:
        writer1 = csv.writer(file)
        writer1.writerow([
            "track #", "TRACK_MEAN_SPEED (micrometer.secs)",
            "TRACK_MAX_SPEED (micrometer.secs)", "NUMBER_SPLITS",
            "TRACK_DURATION (secs)", "TRACK_DISPLACEMENT (micrometer)"
        ])

        with open(dstDir + fileName + 'spots_properties.csv',
                  "w") as trackfile:
            writer2 = csv.writer(trackfile)
            #writer2.writerow(["spot ID","POSITION_X","POSITION_Y","Track ID", "FRAME"])
            writer2.writerow(
                ["Tracking ID", "Timepoint", "Time (secs)", "X pos", "Y pos"])

            for id in model.getTrackModel().trackIDs(True):

                # Fetch the track feature from the feature model.
                v = (fm.getTrackFeature(id, 'TRACK_MEAN_SPEED') *
                     Pixel_calibration) / Time_interval
                ms = (fm.getTrackFeature(id, 'TRACK_MAX_SPEED') *
                      Pixel_calibration) / Time_interval
                s = fm.getTrackFeature(id, 'NUMBER_SPLITS')
                d = fm.getTrackFeature(id, 'TRACK_DURATION') * Time_interval
                e = fm.getTrackFeature(
                    id, 'TRACK_DISPLACEMENT') * Pixel_calibration
                model.getLogger().log('')
                model.getLogger().log('Track ' + str(id) +
                                      ': mean velocity = ' + str(v) + ' ' +
                                      model.getSpaceUnits() + '/' +
                                      model.getTimeUnits())

                track = model.getTrackModel().trackSpots(id)
                writer1.writerow(
                    [str(id), str(v),
                     str(ms), str(s),
                     str(d), str(e)])

                for spot in track:
                    sid = spot.ID()
                    x = spot.getFeature('POSITION_X')
                    y = spot.getFeature('POSITION_Y')
                    z = spot.getFeature('TRACK_ID')
                    t = spot.getFeature('FRAME')
                    time = int(t) * int(Time_interval)
                    writer2.writerow(
                        [str(id), str(t),
                         str(time), str(x),
                         str(y)])
def processImages(cfg, wellName, wellPath, images):
    firstImage = IJ.openImage(images[0][0][0][0])
    imgWidth = firstImage.getWidth()
    imgHeight = firstImage.getHeight()

    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(
                ELMConfig.chansToSkip):
            continue
        imColorSeq = ImageStack(imgWidth, imgHeight)
        imSeq = ImageStack(imgWidth, imgHeight)
        totalHist = []
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            for t in range(0, cfg.getValue(ELMConfig.numT)):

                currIP = IJ.openImage(images[c][z][t][0])
                imColorSeq.addSlice(currIP.duplicate().getProcessor())

                currIP = ELMImageUtils.getGrayScaleImage(
                    currIP, c, chanName, cfg)

                imSeq.addSlice(currIP.getProcessor())
                imgStats = currIP.getStatistics()
                currHist = imgStats.getHistogram()
                if not totalHist:
                    for i in range(len(currHist)):
                        totalHist.append(currHist[i])
                else:
                    for i in range(len(currHist)):
                        totalHist[i] += currHist[i]

        if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue(
                ELMConfig.thresholdFromWholeRange) == True:
            threshMethod = "Otsu"  # Default works very poorly for this data
            if cfg.hasValue(ELMConfig.thresholdMethod):
                threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
            thresholder = AutoThresholder()
            computedThresh = thresholder.getThreshold(threshMethod, totalHist)
            cfg.setValue(ELMConfig.imageThreshold, computedThresh)
            print("\tComputed threshold from total hist (" + threshMethod +
                  "): " + str(computedThresh))
            print()
        else:
            print("\tUsing threshold computed on individual images!")
            print()
            computedThresh = 0

        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        imp = ImagePlus()
        imp.setStack(imSeq)
        imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        imp.setTitle(wellName + ", channel " + str(c))

        impColor = ImagePlus()
        impColor.setStack(imColorSeq)
        impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        impColor.setTitle(wellName + ", channel " + str(c) + " (Color)")

        #----------------------------
        # Create the model object now
        #----------------------------

        # Some of the parameters we configure below need to have
        # a reference to the model at creation. So we create an
        # empty model now.

        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        pa_features = [
            "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X",
            "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major",
            "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew",
            "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret",
            "AR", "Round", "Solidity"
        ]

        featureNames = {}
        featureShortNames = {}
        featureDimensions = {}
        isInt = {}
        for feature in pa_features:
            featureNames[feature] = feature
            featureShortNames[feature] = feature
            featureDimensions[feature] = Dimension.STRING
            isInt[feature] = False

        model.getFeatureModel().declareSpotFeatures(pa_features, featureNames,
                                                    featureShortNames,
                                                    featureDimensions, isInt)

        #------------------------
        # Prepare settings object
        #------------------------

        settings = Settings()
        settings.setFrom(imp)

        dbgPath = os.path.join(wellPath, 'debugImages_' + chanName)
        if not os.path.exists(dbgPath):
            os.makedirs(dbgPath)

        if cfg.hasValue(ELMConfig.thresholdMethod):
            threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
        else:
            threshMethod = "Default"

        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = ThresholdDetectorFactory()
        settings.detectorSettings = {
            'THRESHOLD': computedThresh,
            'ABOVE': True,
            'DEBUG_MODE': True,
            'DEBUG_OUTPATH': dbgPath,
            'THRESHOLD_METHOD': threshMethod
        }

        #settings.detectorFactory = LocalThresholdDetectorFactory()
        #settings.detectorSettings = {
        #    'THRESHOLD' : computedThresh,
        #    'DEBUG_MODE' : True,
        #    'DEBUG_OUTPATH' : dbgPath
        #}

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 150, True)
        settings.addSpotFilter(filter1)

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough

        # Linking
        settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0
        # in pixels

        linkFeaturePenalties = HashMap()
        linkFeaturePenalties['Area'] = 1.0
        linkFeaturePenalties['POSITION_X'] = 1.0
        linkFeaturePenalties['POSITION_Y'] = 1.0
        #linkFeaturePenalties['Circ.'] = 1.0
        #linkFeaturePenalties['Mean'] = 1.0

        settings.trackerSettings[
            TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties
        # Gap closing
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True
        settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8
        settings.trackerSettings[
            TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES));
        # Track splitting
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False
        settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES));
        # Track merging
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True
        settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES));
        # Others
        settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf")
        settings.trackerSettings[
            TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05
        settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9

        # Configure track analyzers - Later on we want to filter out tracks
        # based on their displacement, so we need to state that we want
        # track displacement to be calculated. By default, out of the GUI,
        # no features are calculated.

        # The displacement feature is provided by the TrackDurationAnalyzer.
        settings.addTrackAnalyzer(TrackDurationAnalyzer())
        settings.addTrackAnalyzer(TrackBranchingAnalyzer())
        settings.addTrackAnalyzer(TrackIndexAnalyzer())
        settings.addTrackAnalyzer(TrackLocationAnalyzer())
        settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

        # Configure track filters - We want to get rid of the two immobile spots at
        # the bottom right of the image. Track displacement must be above 10 pixels.
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)

        #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo())

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)
        trackmate.setNumThreads(1)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        print("Processing " + chanName + "...")
        ok = trackmate.process()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        #----------------
        # Display results
        #----------------
        print("Rendering...")

        # Set spot names based on track IDs
        # This allows track IDs to be displayed in the rendered video
        for tId in model.getTrackModel().trackIDs(True):
            trackSpots = model.getTrackModel().trackSpots(tId)
            for spot in trackSpots:
                spot.setName(str(tId))

        # Determine sub-tracks within a track
        # Since tracks can merge, we want to keep track of which track a spot is
        # in prior to the merge
        spotToSubTrackMap = {}
        spotIt = model.getSpots().iterator(False)
        trackModel = model.getTrackModel()
        subTrackCount = {}
        while spotIt.hasNext():
            spot = spotIt.next()
            spotEdges = trackModel.edgesOf(spot)
            # Find merge points within a track: ignore spots with fewer than 2 edges
            if (len(spotEdges) < 2):
                continue

            # We have a merge if we have multiple incoming edges
            incomingEdges = 0
            edgeIt = spotEdges.iterator()
            ancestorSpots = []
            while edgeIt.hasNext():
                edge = edgeIt.next()
                src = trackModel.getEdgeSource(edge)
                dst = trackModel.getEdgeTarget(edge)
                if dst.ID() == spot.ID():
                    ancestorSpots.append(src)
                    incomingEdges += 1
            # Ignore non-merges
            if incomingEdges < 2:
                continue

            trackId = trackModel.trackIDOf(spot)
            if trackId in subTrackCount:
                subTrackId = subTrackCount[trackId]
            else:
                subTrackId = 1
            for ancestorSpot in ancestorSpots:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap,
                                       ancestorSpot, subTrackId, trackId,
                                       False)
                subTrackId += 1
            subTrackCount[trackId] = subTrackId

        # Spots after the last merge still need to be labeled
        for tId in trackModel.trackIDs(True):
            trackSpots = trackModel.trackSpots(tId)
            spotIt = trackSpots.iterator()
            lastSpot = None
            while spotIt.hasNext():
                spot = spotIt.next()
                outgoingEdges = 0
                spotEdges = trackModel.edgesOf(spot)
                edgeIt = spotEdges.iterator()
                while edgeIt.hasNext():
                    edge = edgeIt.next()
                    src = trackModel.getEdgeSource(edge)
                    dst = trackModel.getEdgeTarget(edge)
                    if src.ID() == spot.ID():
                        outgoingEdges += 1
                if outgoingEdges == 0 and len(spotEdges) > 0:
                    lastSpot = spot

            if tId in subTrackCount:
                subTrackId = subTrackCount[tId]
            else:
                subTrackId = 1
            if not lastSpot == None:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot,
                                       subTrackId, tId, True)

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n')
        for spotId in spotToSubTrackMap:
            trackFile.write(
                str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) +
                '\n')
        trackFile.close()

        # Write Edge Set
        trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv")
        trackFile = open(trackOut, 'w')
        trackFile.write('Track Id, Spot Id, Spot Id \n')
        edgeIt = trackModel.edgeSet().iterator()
        while edgeIt.hasNext():
            edge = edgeIt.next()
            src = trackModel.getEdgeSource(edge)
            dst = trackModel.getEdgeTarget(edge)
            trackId = trackModel.trackIDOf(edge)
            srcSubTrack = spotToSubTrackMap[src.ID()][0]
            dstSubTrack = spotToSubTrackMap[dst.ID()][0]
            if not srcSubTrack == dstSubTrack:
                trackFile.write(
                    str(trackId) + ', ' + str(src.ID()) + ', ' +
                    str(dst.ID()) + '\n')
        trackFile.close()

        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, impColor)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_COLORING,
            PerTrackFeatureColorGenerator(model,
                                          TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_SPOT_COLORING,
            SpotColorGeneratorPerTrackFeature(model,
                                              TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES,
                                     True)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_MODE,
            TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2)
        displayer.render()
        displayer.refresh()

        trackmate.getSettings().imp = impColor
        coa = CaptureOverlayAction(None)
        coa.execute(trackmate)

        WindowManager.setTempCurrentImage(coa.getCapture())
        IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi"))

        imp.close()
        impColor.close()
        displayer.clear()
        displayer.getImp().hide()
        displayer.getImp().close()
        coa.getCapture().hide()
        coa.getCapture().close()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

        # The feature model, that stores edge and track features.
        fm = model.getFeatureModel()

        # Write output for tracks
        numTracks = model.getTrackModel().trackIDs(True).size()
        print "Writing track data for " + str(numTracks) + " tracks."
        trackDat = {}
        for tId in model.getTrackModel().trackIDs(True):
            track = model.getTrackModel().trackSpots(tId)

            # Ensure track spots dir exists
            trackOut = os.path.join(wellPath, chanName + "_track_spots")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')

            # Write Header
            header = 'Name, ID, Frame, '
            for feature in track.toArray()[0].getFeatures().keySet():
                if feature == 'Frame':
                    continue
                header += feature + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)
            # Write spot data
            avgTotalIntensity = 0
            for spot in track:
                #print spot.echo()
                data = [
                    spot.getName(),
                    str(spot.ID()),
                    str(spot.getFeature('FRAME'))
                ]
                for feature in spot.getFeatures():
                    if feature == 'Frame':
                        continue
                    elif feature == 'TOTAL_INTENSITY':
                        avgTotalIntensity += spot.getFeature(feature)
                    data.append(str(spot.getFeature(feature)))
                trackFile.write(','.join(data) + '\n')
            trackFile.close()
            avgTotalIntensity /= len(track)

            # Write out track stats
            # Make sure dir exists
            trackOut = os.path.join(wellPath, chanName + "_tracks")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')
            # Fetch the track feature from the feature model.
            header = ''
            for featName in fm.getTrackFeatureNames():
                header += featName + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)

            features = ''
            for featName in fm.getTrackFeatureNames():
                features += str(fm.getTrackFeature(tId, featName)) + ', '
            features = features[0:len(features) - 2]
            features += '\n'
            trackFile.write(features)
            trackFile.write('\n')
            trackFile.close()

            trackDat[tId] = [
                str(tId),
                str(fm.getTrackFeature(tId, 'TRACK_DURATION')),
                str(avgTotalIntensity),
                str(fm.getTrackFeature(tId, 'TRACK_START')),
                str(fm.getTrackFeature(tId, 'TRACK_STOP'))
            ]

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write(
            'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n'
        )
        for track in trackDat:
            trackFile.write(','.join(trackDat[track]) + '\n')
        trackFile.close()

        trackOut = os.path.join(wellPath, chanName + "_trackModel.xml")
        trackFile = File(trackOut)
        writer = TmXmlWriter(trackFile, model.getLogger())
        #writer.appendLog( logPanel.getTextContent() );
        writer.appendModel(trackmate.getModel())
        writer.appendSettings(trackmate.getSettings())
        #writer.appendGUIState( controller.getGuimodel() );
        writer.writeToFile()

    model.clearSpots(True)
    model.clearTracks(True)

    return trackDat
Esempio n. 6
0
def run_trackmate(imp, path, filename, params, batch_mode=False):
    # initialize trackmate model
    model = Model()

    # Set logger - use to see outputs, not needed in batch mode
    model.setLogger(Logger.IJ_LOGGER)

    # Create setting object from image
    settings = Settings()
    settings.setFrom(imp)

    cal = imp.getCalibration()
    model.setPhysicalUnits("micron", "sec")

    # Configure detector
    settings.detectorFactory = LogDetectorFactory()
    #    settings.detectorFactory = DogDetectorFactory()

    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': params.do_subpixel_localization,
        'RADIUS': params.radius,
        'TARGET_CHANNEL': 0,
        'THRESHOLD': params.threshold,
        'DO_MEDIAN_FILTERING': params.do_median_filtering,
    }

    #    print(params)

    # Add spot filters
    filter_quality = FeatureFilter('QUALITY', params.quality, True)
    settings.addSpotFilter(filter_quality)
    filter_snr = FeatureFilter('SNR', params.snr, True)
    settings.addSpotFilter(filter_snr)

    # Compute spot features
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

    # Compute track features
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackLocationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())

    # Update model
    ModelFeatureUpdater(model, settings)

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings[
        'LINKING_MAX_DISTANCE'] = params.linking_max_distance
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = params.gap_closing_max_distance
    settings.trackerSettings['MAX_FRAME_GAP'] = params.max_frame_gap

    # Add track filters
    filter_T1 = FeatureFilter('TRACK_DURATION', params.track_duration, True)
    filter_MTD = FeatureFilter('TRACK_DISPLACEMENT', params.track_displacement,
                               True)

    settings.addTrackFilter(filter_T1)
    settings.addTrackFilter(filter_MTD)

    # Instantiate trackmate
    trackmate = TrackMate(model, settings)

    # Execute all

    ok = trackmate.checkInput()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    filename = os.path.splitext(filename)[0]  #filename without extension
    outFile = File(os.path.join(path, filename + "_Tracks.xml"))
    ExportTracksToXML.export(model, settings, outFile)
    #imp.close()

    tm_writer = TmXmlWriter(File(os.path.join(path, filename + "_TM.xml")))
    tm_writer.appendModel(model)
    tm_writer.appendSettings(settings)
    tm_writer.writeToFile()

    if not batch_mode:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))