Esempio n. 1
0
def plot_information_flow(simulation_list):
    for ind_key in range(len(simulation_list)):
        print('ind_key = %d' % ind_key)
        simulation_key = simulation_list[ind_key]

        (dt, tSim, N, S, p, num_fact, p_fact, dzeta, a_pf, eps, f_russo, cm, a,
         U, w, tau_1, tau_2, tau_3_A, tau_3_B, g_A, beta, tau, t_0, g,
         random_seed, p_0, n_p, nSnap,
         russo2008_mode) = file_handling.load_parameters(simulation_key)

        retrieved_saved = \
            file_handling.load_retrieved_several(n_seeds[ind_key], simulation_key)
        m_saved, mi_saved, control, shuffled = get_mi(retrieved_saved,
                                                      retrieved_saved)

        corrected = np.array(mi_saved)[:, None] - np.array(shuffled)
        # print((np.array(mi_saved)).shape)
        # print((np.array(shuffled)).shape)
        # print(corrected.shape)
        plt.title('Information flow, shuffled bias estimate')
        plt.plot(m_saved,
                 corrected,
                 '-o',
                 color=color_s[ind_key],
                 label=r'$g_A$=%.1f, $w$=%.1f' % (g_A, w))
        plt.plot(m_saved, shuffled, ':', color=color_s[ind_key], label='bias')
        # plt.yscale('log', basey=10)
        plt.ylim([ymin, ymax])
        plt.xlabel(r'Shift $\Delta n$')
        plt.legend(loc='upper right')
Esempio n. 2
0
def plot_information_flow_apf(simulation_list):
    g_A_s = np.array([0., 0.5, 1.])
    apf_s = np.array([0., 0.05, 0.1, 0.2, 0.4])
    n_gA = len(g_A_s)
    n_apf = len(apf_s)
    for ind_key in range(len(simulation_list)):
        print('ind_key = %d' % ind_key)
        simulation_key = simulation_list[ind_key]

        (dt, tSim, N, S, p, num_fact, p_fact, dzeta, a_pf, eps, f_russo, cm, a,
         U, w, tau_1, tau_2, tau_3_A, tau_3_B, g_A, beta, tau, t_0, g,
         random_seed, p_0, n_p, nSnap, russo2008_mode,
         muted_prop) = file_handling.load_parameters(simulation_key)

        retrieved_saved = file_handling.load_retrieved_several(
            n_seeds[ind_key], simulation_key)
        m_saved, mi_saved, control, shuffled, auto_corr, auto_corr_shuff = \
            get_mi(retrieved_saved, retrieved_saved)
        auto_corr[1] = 0

        corrected = np.array(mi_saved)[:, None] - np.array(shuffled)
        ind_gA = [i for i in range(len(g_A_s)) if g_A_s[i] == g_A][0]
        ind_apf = [i for i in range(len(apf_s)) if apf_s[i] == a_pf][0]
        print((np.array(mi_saved)).shape)
        print((np.array(shuffled)).shape)
        print(corrected.shape)
        plt.figure('Mi')
        plt.subplot(n_gA // 2 + n_gA % 2, 2, ind_gA + 1)
        plt.title('g_A=%.1f, w=%.1f' % (g_A, w))
        plt.plot(m_saved,
                 corrected,
                 '-o',
                 color=color_s[ind_apf],
                 label=r'$a_{pf}$=%.2f' % a_pf)
        plt.plot(m_saved, shuffled, ':', color=color_s[ind_apf], label='bias')
        plt.yscale('log', basey=10)
        plt.ylim([ymin, ymax])
        plt.xlabel(r'Shift $\Delta n$')
        plt.legend(loc='upper right')

        plt.figure('Autocor')
        plt.subplot(n_apf // 2 + n_apf % 2, 2, ind_apf + 1)
        plt.plot(m_saved,
                 auto_corr,
                 '-o',
                 color=color_s[ind_gA],
                 label=r'$g_A$=%.1f' % g_A)
        plt.plot(m_saved, auto_corr_shuff, ':', color=color_s[ind_gA])
        plt.yscale('log')
        plt.title(r'$a_{pf}$=%.2f' % a_pf)
        plt.ylabel('Correlation')
        plt.xlabel(r'$\Delta n$')

    plt.figure('Mi')
    plt.tight_layout()

    plt.figure('Autocor')
    plt.legend()
    plt.tight_layout()
Esempio n. 3
0
plt.rc('ytick', labelsize=BIGGER_SIZE)  # fontsize of the tick labels
plt.rc('legend', fontsize=BIGGER_SIZE)  # legend fontsize
plt.rc('figure', titlesize=HUGE_SIZE)  # fontsize of the figure title

# simulations = ['a2cc92e57feefe09afa4b7d522648850']
# simulations = ['f30d8a2438252005f6a9190c239c01c1']
simulations = [
    'f35c969f14b35efe505be6e417c03656', '9e0fbd728bd38ee6eb130d85f35faa9a'
]
# simulations = ['b18e30bc89dbcb5bc2148fb9c6e0c51d']
# simulations = ['ff9fe40ed43a94577c1cc2fea6453bf0']

n_seeds = 1
key = simulations[0]

retrieved = file_handling.load_retrieved_several(n_seeds, key)
crossover = file_handling.load_crossover_several(n_seeds, key)
trans_time = file_handling.load_transition_time(0, key)[0]

(dt, tSim, N, S, p, num_fact, p_fact, dzeta, a_pf, eps, f_russo, cm,
 a, U, w, tau_1, tau_2, tau_3_A, tau_3_B, g_A, beta, tau, t_0, g,
 random_seed, p_0, n_p, nSnap, russo2008_mode, kick_prop) = \
            file_handling.load_parameters(key)

ksi_i_mu, delta__ksi_i_mu__k, J_i_j_k_l, \
    C_i_j = file_handling.load_network(key)

pair_crossovers = [[] for pair in range(p**2)]
previous = []
following = []
crossovers = []
Esempio n. 4
0
    yy = np.arange(0, max_count + 1, 1)
    XX, YY = np.meshgrid(xx, yy)
    for cycle in cycle_count:
        data[cycle_count[cycle], len(cycle)] += 1
    plt.pcolor(XX, YY, data, norm=colors.LogNorm(vmin=1, vmax=5e3))
    plt.xlim(1, max_cycle)
    plt.ylim(1, 1000)
    cbar = plt.colorbar()
    plt.yscale('log')


for ind_key in range(1):
    print('ind_key = %d' % ind_key)
    simulation_key = simulations[ind_key]
    ryom_name = ryom_data[ind_key]
    retrieved = file_handling.load_retrieved_several(1, simulation_key)
    plt.subplot(311)
    plot_cycles(retrieved, simulation_key)
    plt.title("Latching sequence")

    retrieved_random = get_eq_random(retrieved, simulation_key)
    retrieved_markov = get_eq_markov(retrieved, simulation_key)

    plt.subplot(312)
    plt.title("Markov sequence")
    plot_cycles(retrieved_markov, simulation_key)
    plt.ylabel('Repetitions')

    plt.subplot(313)
    plt.title("Random sequence")
    plot_cycles(retrieved_random, simulation_key)