Esempio n. 1
0
    def initMenus(self):
        """ Initialise top bar menu items by importing from configuration file.
        """
        menu_items = eval(file_io.load_config(MENU_FILE))
        menubar = self.menuBar()

        for menu in menu_items:
            newMenu = menubar.addMenu(menu[0])
            for action in menu[1]:
                if action["name"] == "sep":
                    newMenu.addSeparator()
                    continue
                newAction = QtGui.QAction(action["name"], self)
                newAction.setShortcut(action["shortcut"])
                newAction.setStatusTip(action["tip"])
                newAction.triggered.connect(action["cb"])
                newMenu.addAction(newAction)
Esempio n. 2
0
import sys
from datetime import datetime

from sklearn.model_selection import RandomizedSearchCV

import file_io as io
import report as rp
import util as ut

# Display progress logs on stdout
log.basicConfig(level=log.INFO, format='%(asctime)s %(levelname)s %(message)s')

if __name__ == '__main__':
    """Does hp search and stores the parameters for each dataset and classifier."""

    config = io.load_config(sys.argv, None)

    experiment_dir = "{}_hpsearch".format(config['experiment'])
    if not os.path.exists(experiment_dir):
        os.makedirs(experiment_dir)

    for dataset_i, dataset_filename in enumerate(config['datasets']):
        log.debug("DATASET_{}: {}".format(dataset_i, dataset_filename))

        # load preprocessed dataset
        X, y, arff_data = io.load_data(dataset_filename, config)
        dataset_name = os.path.splitext(dataset_filename)[0]
        log.info("DATASET_{}_NAME: {}".format(dataset_i, dataset_name))

        for estimator_i, estimator in enumerate(config['estimators']):
            log.debug("ESTIMATOR_{}: {}".format(estimator_i,
Esempio n. 3
0
import file_io
import arm
import simulator
import sequencer
import controls

import sys

from PyQt4 import QtGui, QtCore, QtOpenGL

MENU_FILE = 'menus.conf'
CONFIG_FILE = 'config.conf'

CONFIG = eval(file_io.load_config(CONFIG_FILE))


class MainWindow(QtGui.QMainWindow):
    """ Main top level class, contains instances of all other main classes"""

    def __init__(self):
        """ Initialise all main classes.
        """
        super(MainWindow, self).__init__()

        self.file_manager = file_io.FileManager(self,
                                                CONFIG["def_arm"],
                                                CONFIG["def_arms_directory"])
        self.arm = arm.Arm(self)
        self.arm_data = None
        self.sim_widget = simulator.SimWidget(self, self.arm, CONFIG["cam_config"])
        self.controls_area = controls.ControlsArea(self)
Esempio n. 4
0
    
     Available estimators:
     * RandomForestClassifier
     * ExtraTreesClassifier
     * DecisionTreeClassifier
     * AdaBoostClassifier
     * GaussianNB
     * KNeighborsClassifier
     * SVC
     * GaussianProcessClassifier
     * MLPClassifier
     * Perceptron
     * ...
     TODO add more estimators
    """
    config = io.load_config(sys.argv, default_config)

    experiment_dir = config['experiment']
    if not os.path.exists(experiment_dir):
        os.makedirs(experiment_dir)

    times_columns = [
        'dataset_name', 'estimator_name', 'train_size', 'repetition', 'split',
        'fit_time', 'score_time'
    ]
    times = pd.DataFrame(columns=times_columns)
    scores_columns = [
        'dataset_name', 'estimator_name', 'train_size', 'repetition', 'split',
        'accuracy', 'f1_macro', 'precision_macro', 'recall_macro'
    ]
    scores = pd.DataFrame(columns=scores_columns)