Esempio n. 1
0
def main():
    baseDir = '/Users/nkridler/Desktop/whale/'  # Base directory

    ############################## PARAMETERS ###############################
    dataDir = baseDir + 'data2/'  # Data directory
    oldDir = baseDir + 'data/'  # Data directory
    params = {
        'NFFT': 256,
        'Fs': 2000,
        'noverlap': 192
    }  # Spectogram parameters

    ######################## BUILD A TrainData OBJECT #######################
    train = fileio.TrainData(dataDir + 'train2.csv', dataDir + 'train2/')
    old = fileio.TrainData(oldDir + 'train.csv', oldDir + 'train/')

    ###################### SET OUTPUT FILE NAME HERE ########################
    trainOutFile = baseDir + 'workspace/trainMetricsBase.csv'
    tmplFile = baseDir + 'moby2/templateBase.csv'
    makeMetrics(tmplFile,
                train=train,
                old=old,
                params=params,
                trainOutFile=trainOutFile)

    ###################### SET OUTPUT FILE NAME HERE ########################
    tmplFile = baseDir + 'moby2/manyMoreTemplates.csv'
    trainOutFile = baseDir + 'moby2/trainMetricsMoreTemplates.csv'
    makeMetrics(tmplFile,
                train=train,
                old=old,
                params=params,
                trainOutFile=trainOutFile)
def main():
    # baseDir = '/home/nick/whale/' # Base directory
    baseDir     = globalConst.BASE_DIR

    ###################### SET OUTPUT FILE NAME HERE ########################
    trainOutFile = baseDir+'workspace/trainMetrics.csv'
    
    ############################## PARAMETERS ###############################
    dataDir         = baseDir+'data/'                  # Data directory
    templateDataDir = baseDir+'template_data/'         # Data directory

    params = {'NFFT':256, 'Fs':2000, 'noverlap':192} # Spectogram parameters
    maxTime = 60 # Number of time slice metrics

    ######################## BUILD A TrainData OBJECT #######################
    train         = fileio.TrainData(        dataDir+'train.csv',dataDir+'train/')
    templateTrain = fileio.TrainData(templateDataDir+'train.csv',templateDataDir+'train/')

    ##################### BUILD A TemplateManager OBJECT ####################
    tmplFile = baseDir+'moby/templateReduced.csv'
    tmpl = templateManager.TemplateManager(fileName=tmplFile, 
                                           trainObj=templateTrain, params=params)

    ##################### PLOT the templates  ####################
    for ix in range(tmpl.size):
        print "Plotting template:",ix
        tmpl.PlotTemplates(index=ix)
def main():
    ###################### WORKING DIRECTORY ########################
    baseDir = globalConst.BASE_DIR

    ###################### SET OUTPUT FILE NAME HERE ########################
    testOutFile = baseDir + 'workspace/testMetrics.csv'

    ############################## PARAMETERS ###############################
    dataDir = baseDir + 'data/'  # Data directory
    templateDataDir = baseDir + 'template_data/'  # Data directory

    params = {
        'NFFT': 256,
        'Fs': 2000,
        'noverlap': 192
    }  # Spectogram parameters
    maxTime = 60  # Number of time slice metrics

    ######################## BUILD A TestData OBJECT #######################
    train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/')
    templateTrain = fileio.TrainData(templateDataDir + 'train.csv',
                                     templateDataDir + 'train/')
    test = fileio.TestData(dataDir + 'test/')

    ##################### BUILD A TemplateManager OBJECT ####################
    tmplFile = baseDir + 'moby/templateReduced.csv'
    tmpl = templateManager.TemplateManager(fileName=tmplFile,
                                           trainObj=templateTrain,
                                           params=params)

    ################## VERTICAL BARS FOR HIFREQ METRICS #####################
    bar_ = np.zeros((12, 9), dtype='Float32')
    bar1_ = np.zeros((12, 12), dtype='Float32')
    bar2_ = np.zeros((12, 6), dtype='Float32')
    bar_[:, 3:6] = 1.
    bar1_[:, 4:8] = 1.
    bar2_[:, 2:4] = 1.

    ########################### CREATE THE HEADER ###########################
    outHdr = metrics.buildHeader(tmpl)

    hL = []
    ####################### LOOP THROUGH THE FILE ###########################
    for i in range(test.nTest):
        printStatus(i)
        P, freqs, bins = test.TestSample(i + 1, params=params)
        out = metrics.computeMetrics(P, tmpl, bins, maxTime)
        out += metrics.highFreqTemplate(P, bar_)
        out += metrics.highFreqTemplate(P, bar1_)
        out += metrics.highFreqTemplate(P, bar2_)
        hL.append(out)
    hL = np.array(hL)

    ########################## WRITE TO FILE ################################
    file = open(testOutFile, 'w')
    file.write(outHdr + "\n")
    np.savetxt(file, hL, delimiter=',')
    file.close()
Esempio n. 4
0
def main():
    #baseDir = '/home/nick/whale/'
    baseDir = globalConst.BASE_DIR
    dataDir = baseDir + 'data/'
    corDir = baseDir + 'moby/'

    # Open up the train file
    train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/')
    t_ = pd.read_csv(corDir + 'trainPredictions.csv')
    order32_ = orderMetric(t_.label, 32)
    order64_ = orderMetric(t_.label, 64)

    # Reorder the data
    reorder32 = order32_.copy()
    reorder64 = order64_.copy()

    # NOTE disabled reordering below, because modified genTrainMetrics
    # now writes in chronological order, not 'reordered' as below.
    """
    k = 0
    for i in xrange(train.numH1):
        j = int(train.h1[i].split('.')[0][5:]) - 1
        reorder32[k] = order32_[j] 
        reorder64[k] = order64_[j] 
        k += 1
    for i in xrange(train.numH0):
        j = int(train.h0[i].split('.')[0][5:]) - 1
        reorder32[k] = order32_[j] 
        reorder64[k] = order64_[j] 
        k += 1
    """

    writeToFile(reorder32, 'corr32.csv', outdir=corDir)
    writeToFile(reorder64, 'corr64.csv', outdir=corDir)
    """
    # There are 84503 samples
    trainSize = globalConst.N_TRAIN
    testSize  = globalConst.N_TEST
    size_ = trainSize + testSize
    tt_ = size_*2. # since these are 2 second clips
    xs_ = np.linspace(0,tt_,testSize)
    xt_ = np.linspace(0,tt_,trainSize)
    test32_ = np.interp(xs_,xt_,order32_)
    test64_ = np.interp(xs_,xt_,order64_)
    """
    t_ = pd.read_csv(corDir + 'testPredictions.csv')
    if 'label' in t_.columns:  # similar to train.csv
        test32_ = orderMetric(t_.label, 32)
        test64_ = orderMetric(t_.label, 64)
    elif 'probability' in t_.columns:  # similar to submissions file
        test32_ = orderMetric(t_.probability, 32)
        test64_ = orderMetric(t_.probability, 64)
    else:
        raise RuntimeError, "label or probability not found in testPredictions.csv"

    writeToFile(test32_, 'testCorr32.csv', outdir=corDir)
    writeToFile(test64_, 'testCorr64.csv', outdir=corDir)
Esempio n. 5
0
def main():
    baseDir = '/home/nick/whale/'  # Base directory

    ###################### SET OUTPUT FILE NAME HERE ########################
    trainOutFile = baseDir + 'workspace/trainMetrics.csv'

    ############################## PARAMETERS ###############################
    dataDir = baseDir + 'data/'  # Data directory
    params = {
        'NFFT': 256,
        'Fs': 2000,
        'noverlap': 192
    }  # Spectogram parameters
    maxTime = 60  # Number of time slice metrics

    ######################## BUILD A TrainData OBJECT #######################
    train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/')

    ##################### BUILD A TemplateManager OBJECT ####################
    tmplFile = baseDir + 'moby/templateReduced.csv'
    tmpl = templateManager.TemplateManager(fileName=tmplFile,
                                           trainObj=train,
                                           params=params)

    ################## VERTICAL BARS FOR HIFREQ METRICS #####################
    bar_ = np.zeros((12, 9), dtype='Float32')
    bar1_ = np.zeros((12, 12), dtype='Float32')
    bar2_ = np.zeros((12, 6), dtype='Float32')
    bar_[:, 3:6] = 1.
    bar1_[:, 4:8] = 1.
    bar2_[:, 2:4] = 1.

    ########################### CREATE THE HEADER ###########################
    outHdr = metrics.buildHeader(tmpl)

    ###################### LOOP THROUGH THE FILES ###########################
    hL = []
    for i in range(train.numH1):
        P, freqs, bins = train.H1Sample(i, params=params)
        out = metrics.computeMetrics(P, tmpl, bins, maxTime)
        out += metrics.highFreqTemplate(P, bar_)
        out += metrics.highFreqTemplate(P, bar1_)
        out += metrics.highFreqTemplate(P, bar2_)
        hL.append([1, i] + out)
    for i in range(train.numH0):
        P, freqs, bins = train.H0Sample(i, params=params)
        out = metrics.computeMetrics(P, tmpl, bins, maxTime)
        out += metrics.highFreqTemplate(P, bar_)
        out += metrics.highFreqTemplate(P, bar1_)
        out += metrics.highFreqTemplate(P, bar2_)
        hL.append([0, i] + out)
    hL = np.array(hL)
    file = open(trainOutFile, 'w')
    file.write("Truth,Index," + outHdr + "\n")
    np.savetxt(file, hL, delimiter=',')
    file.close()
Esempio n. 6
0
def main():
    baseDir = '/home/nick/whale/'
    dataDir = baseDir + 'data/'

    # Open up the train file
    train = fileio.TrainData(dataDir + 'train.csv', dataDir + 'train/')
    t_ = pd.read_csv(dataDir + 'train.csv')
    order32_ = orderMetric(t_.label, 32)
    order64_ = orderMetric(t_.label, 64)

    # Reorder the data
    reorder32 = order32_.copy()
    reorder64 = order64_.copy()
    k = 0
    for i in xrange(train.numH1):
        j = int(train.h1[i].split('.')[0][5:]) - 1
        reorder32[k] = order32_[j]
        reorder64[k] = order64_[j]
        k += 1
    for i in xrange(train.numH0):
        j = int(train.h0[i].split('.')[0][5:]) - 1
        reorder32[k] = order32_[j]
        reorder64[k] = order64_[j]
        k += 1

    writeToFile(reorder32, 'corr32.csv')
    writeToFile(reorder64, 'corr64.csv')

    # There are 84503 samples
    trainSize = 30000
    testSize = 54503
    size_ = trainSize + testSize

    tt_ = size_ * 2.  # since these are 2 second clips
    xs_ = np.linspace(0, tt_, testSize)
    xt_ = np.linspace(0, tt_, trainSize)
    test32_ = np.interp(xs_, xt_, order32_)
    test64_ = np.interp(xs_, xt_, order64_)

    writeToFile(test32_, 'testCorr32.csv')
    writeToFile(test64_, 'testCorr64.csv')
Esempio n. 7
0
def create_dirs(Ntrain, Nval, Ntest, original_dataset_dir, base_dir):

  #original_dataset_dir = 'C:\\svn\\dwatts\\dev\\datasets\\whale_data\\data'
  #original_test_dataset_dir = 'C:\\svn\\dwatts\\dev\\datasets\\whale_data\\data\\test'

  # smaller dataset
  #base_dir = 'C:\\svn\\dwatts\\dev\\dl_with_python\\whale_small\\'

  if os.path.exists(base_dir):
    shutil.rmtree(base_dir)
  os.mkdir(base_dir)

  # define train, validationa and test splits
  train_dir = os.path.join(base_dir, 'train')
  os.mkdir(train_dir)
  validation_dir = os.path.join(base_dir, 'validation')
  os.mkdir(validation_dir)
  test_dir = os.path.join(base_dir, 'test')
  os.mkdir(test_dir)

  # Right and non-right whale training recording
  train_right_dir = os.path.join(train_dir, 'right')
  os.mkdir(train_right_dir)
  train_nonright_dir = os.path.join(train_dir, 'nonright')
  os.mkdir(train_nonright_dir)

  # Right and non-right whale validation recordings
  validation_right_dir = os.path.join(validation_dir, 'right')
  os.mkdir(validation_right_dir)
  validation_nonright_dir = os.path.join(validation_dir, 'nonright')
  os.mkdir(validation_nonright_dir)

  # Right and non-right whale training recordings
  test_right_dir = os.path.join(test_dir, 'right')
  os.mkdir(test_right_dir)
  test_nonright_dir = os.path.join(test_dir, 'nonright')
  os.mkdir(test_nonright_dir)

  # first work out which files are right/non-right and
  # then copy smaller set to the whale_small dir

  # build a train object
  original_train_dir = os.path.join(original_dataset_dir, 'train')
  train = fileio.TrainData(original_dataset_dir+'/train.csv',base_dir+'train')

  # Copy Ntrain right whale recordings to train_whale_dir
  train_right_fnames = [train.h1[i] for i in range(Ntrain) ]
  for fname in train_right_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(train_right_dir, fname)
      shutil.copyfile(src, dst)

  # Copy Ntrain non-right whale recordings to train_whale_dir
  train_nonright_fnames = [train.h0[i] for i in range(Ntrain) ]
  for fname in train_nonright_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(train_nonright_dir, fname)
      shutil.copyfile(src, dst)

  # Copy next Nval right whale recordings to validation_whale_dir
  val_right_fnames = [train.h1[i] for i in range(Ntrain, Ntrain+Nval) ]
  for fname in val_right_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(validation_right_dir, fname)
      shutil.copyfile(src, dst)

  # Copy next Nval non-right whale recordings to validation_whale_dir
  val_nonright_fnames = [train.h0[i] for i in range(Ntrain, Ntrain+Nval) ]
  for fname in val_nonright_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(validation_nonright_dir, fname)
      shutil.copyfile(src, dst)

  # Copy next Ntest right whale recordings to test_whale_dir
  test_right_fnames = [train.h1[i] for i in range(Ntrain+Nval, Ntrain+Nval+Ntest) ]
  for fname in test_right_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(test_right_dir, fname)
      shutil.copyfile(src, dst)

  # Copy next Ntest non-right whale recordings to test_whale_dir
  test_nonright_fnames = [train.h0[i] for i in range(Ntrain+Nval, Ntrain+Nval+Ntest) ]
  for fname in test_nonright_fnames:
      src = os.path.join(original_train_dir, fname)
      dst = os.path.join(test_nonright_dir, fname)
      shutil.copyfile(src, dst)

  # Create dictionary of training, validation and test ids/labels
  partition = { 'train': train_right_fnames + train_nonright_fnames,
                'validation': val_right_fnames + val_nonright_fnames,
                'test': test_right_fnames + test_nonright_fnames}

  labels_train_right = {key: 1 for key in train_right_fnames}
  labels_train_nonright = {key: 0 for key in train_nonright_fnames}
  labels_val_right = {key: 1 for key in val_right_fnames}
  labels_val_nonright = {key: 0 for key in val_nonright_fnames}
  labels_test_right = {key: 1 for key in test_right_fnames}
  labels_test_nonright = {key: 0 for key in test_nonright_fnames}

  labels = {**labels_train_right,
            **labels_train_nonright,
            **labels_val_right,
            **labels_val_nonright,
            **labels_test_right,
            **labels_test_nonright}

  return partition, labels
def main():

    baseDir     = globalConst.BASE_DIR

    ###################### SET OUTPUT FILE NAME HERE ########################
    trainOutFile = baseDir+'workspace/trainMetrics.csv'
    
    ############################## PARAMETERS ###############################
    dataDir         = baseDir+'data/'              # Data directory
    templateDataDir = baseDir+'template_data/'     # Data directory

    params = {'NFFT':256, 'Fs':2000, 'noverlap':192} # Spectogram parameters
    maxTime = 60 # Number of time slice metrics

    ######################## BUILD A TrainData OBJECT #######################
    train         = fileio.TrainData(        dataDir+'train.csv',dataDir+'train/')
    templateTrain = fileio.TrainData(templateDataDir+'train.csv',templateDataDir+'train/')

    ##################### BUILD A TemplateManager OBJECT ####################
    tmplFile = baseDir+'moby/templateReduced.csv'
    tmpl = templateManager.TemplateManager(fileName=tmplFile, 
                                           trainObj=templateTrain, params=params)

    ################## VERTICAL BARS FOR HIFREQ METRICS #####################
    bar_ = np.zeros((12,9),dtype='Float32')
    bar1_ = np.zeros((12,12),dtype='Float32')
    bar2_ = np.zeros((12,6),dtype='Float32')
    bar_[:,3:6] = 1.
    bar1_[:,4:8] = 1.
    bar2_[:,2:4] = 1.

    ########################### CREATE THE HEADER ###########################
    outHdr = metrics.buildHeader(tmpl)

    ###################### LOOP THROUGH THE FILES ###########################
    hL = []
    print "\nprocessing whale clips"
    for i in range(train.numH1):
        printStatus(i)
        clip_filename = train.h1[i]
        fid = fileID(clip_filename) 

        P, freqs, bins = train.H1Sample(i,params=params)
        out  = metrics.computeMetrics(P, tmpl, bins, maxTime)
        out += metrics.highFreqTemplate(P, bar_)
        out += metrics.highFreqTemplate(P, bar1_)
        out += metrics.highFreqTemplate(P, bar2_)
        #hL.append([1, i] + out)
        hL.append( (fid, [1,i]+out) ) # NOTE added fid for sorting below

    print "\nprocessing non-whale clips"
    for i in range(train.numH0):
        printStatus(i)
        clip_filename = train.h0[i]
        fid = fileID(clip_filename) 

        P, freqs, bins = train.H0Sample(i,params=params)
        out  = metrics.computeMetrics(P, tmpl, bins, maxTime)
        out += metrics.highFreqTemplate(P, bar_)
        out += metrics.highFreqTemplate(P, bar1_)
        out += metrics.highFreqTemplate(P, bar2_)
        #hL.append([0, i] + out)
        hL.append( (fid, [0,i]+out) ) # NOTE added fid for sorting below

    # NOTE Sort by fileID so metrics file lines are in 
    # sequential order (train1.aiff, train2.aiff....)
    print "\nsorting metrics by fileID"
    hL_sort = np.array( [metric_lst for fid, metric_lst in sorted(hL)] ) 

    print "writing metrics to:", trainOutFile
    file = open(trainOutFile,'w')
    file.write("Truth,Index,"+outHdr+"\n")
    np.savetxt(file,hL_sort,delimiter=',')
    file.close()