Esempio n. 1
0
def start(githubu, twiteru, depth=2, iterations=100):
	
	print "crawl the github social graph of %s" % githubu

	matrix_g, nodes_g = github.start(githubu, depth)

	print "crawl the twiter social graph of %s" % twiteru

	matrix_t, nodes_t = twiter.start(twiteru, depth)

	print "calculate the similarity matrix between github social graph and twiter social graph"

	similarity_matrix = cal_matrix.cal_similarity_matrix(matrix_g, matrix_t, iterations)

	print "make decision"

	return filters.start(similarity_matrix, nodes_g, nodes_t)
Esempio n. 2
0
def start(githubu, twiteru, depth=2, iterations=100):

    print "crawl the github social graph of %s" % githubu

    matrix_g, nodes_g = github.start(githubu, depth)

    print "crawl the twiter social graph of %s" % twiteru

    matrix_t, nodes_t = twiter.start(twiteru, depth)

    print "calculate the similarity matrix between github social graph and twiter social graph"

    similarity_matrix = cal_matrix.cal_similarity_matrix(
        matrix_g, matrix_t, iterations)

    print "make decision"

    return filters.start(similarity_matrix, nodes_g, nodes_t)
Esempio n. 3
0
    else:

        matrix_g, nodes_g = github.start(githubu)

    print "crawl the twiter social graph of %s" % twiteru

    if args.depth:

        matrix_t, nodes_t = twiter.start(twiteru, args.depth)

    else:

        matrix_t, nodes_t = twiter.start(twiteru)

    print "calculate the similarity matrix between github social graph and twiter social graph"

    if args.iterations:

        similarity_matrix = cal_matrix.cal_similarity_matrix(
            matrix_g, matrix_t, args.iterations)

    else:

        similarity_matrix = cal_matrix.cal_similarity_matrix(
            matrix_g, matrix_t)

    print "make decision"

    filters.start(similarity_matrix, nodes_g, nodes_t)
Esempio n. 4
0
	if args.depth:

		matrix_t, nodes_t = twiter.start(twiteru, args.depth)

	else:

		matrix_t, nodes_t = twiter.start(twiteru)


	print "calculate the similarity matrix between github social graph and twiter social graph"

	if args.iterations:

		similarity_matrix = cal_matrix.cal_similarity_matrix(matrix_g, matrix_t, args.iterations)

	else:

		similarity_matrix = cal_matrix.cal_similarity_matrix(matrix_g, matrix_t)

	print "make decision"

	result=filters.start(similarity_matrix, nodes_g, nodes_t)

	print str(result)