Esempio n. 1
0
def get_estimates(stock: str):
    # Convert Stock Name to Lowercase
    stock = stock.lower()

    # Load Data
    soup = _make_soup("https://www.finanzen.net/schaetzungen/" + stock)

    # Check for Error
    _check_site(soup)

    # Parse Table containing Yearly Estimates
    table_dict = {}
    table = soup.find("h1", text=re.compile("^Schätzungen")).parent
    years = table.find_all("th")[1:]
    years = [x.get_text() for x in years]
    rows = table.find_all("tr")[1:]
    for row in rows:
        fields = row.find_all("td")
        fields = [x.get_text() for x in fields]
        name = fields[0]
        row_data = fields[1:]
        row_data = [x if x != "-" else None for x in row_data]
        row_data = [
            re.sub("[^\d,]", "", x) if x is not None else x for x in row_data
        ]
        row_data = [
            re.sub(",", ".", x) if x is not None else x for x in row_data
        ]
        row_data = [float(x) if x is not None else x for x in row_data]
        table_dict[name] = dict(zip(years, row_data))

    # Return Estimates in Dict
    return table_dict
Esempio n. 2
0
def get_estimates(stock: str, output="dataframe"):

    # Check Input
    if output not in ["dataframe", "dict"]:
        raise ValueError(
            "Please choose either 'dict' or 'dataframe' for input")

    # Convert Stock Name to Lowercase
    stock = stock.lower()

    # Load Data
    soup = _make_soup("https://www.finanzen.net/schaetzungen/" + stock)

    # Check for Error
    _check_site(soup)

    # Parse Table containing Yearly Estimates
    table_dict = {}
    table = soup.find("h1", text=re.compile("^Schätzungen")).parent
    years = table.find_all("th")[1:]
    years = [x.get_text() for x in years]
    rows = table.find_all("tr")[1:]
    for row in rows:
        fields = row.find_all("td")
        fields = [x.get_text() for x in fields]
        name = fields[0]
        row_data = fields[1:]
        row_data = [x if x != "-" else None for x in row_data]
        row_data = [
            re.sub("[^\d,]", "", x) if x is not None else x for x in row_data
        ]
        row_data = [
            re.sub(",", ".", x) if x is not None else x for x in row_data
        ]
        row_data = [float(x) if x is not None else x for x in row_data]
        table_dict[name] = dict(zip(years, row_data))

    # Return Estimates
    if output == "dict":
        return table_dict
    else:
        df_list = []
        for f in table_dict:
            df_tmp = pd.DataFrame({
                "Metric": f,
                "Year": list(table_dict[f].keys()),
                "Value": list(table_dict[f].values())
            })
            df_list.append(df_tmp)
        return pd.concat(df_list)
Esempio n. 3
0
def search_stock(stock: str, limit: int = -1):
    # Convert Stock Name to Lowercase
    stock = stock.lower()

    # Make Request
    soup = _make_soup("https://www.finanzen.net/suchergebnis.asp?_search=" +
                      stock)

    # Check for Error
    if soup.find("div", {"class": "red"}) is not None:
        if "kein Ergebnis geliefert" in soup.find("div", {
                "class": "red"
        }).get_text():
            return list()

    # Define Function to Extract Results
    result_list = []
    table_outer_div = soup.find("div", {"class": "table-responsive"})
    table = table_outer_div.find("table", {"class": "table"})
    rows = table.find_all("tr")
    for row in rows[1:]:
        cells = row.find_all("td")
        name = cells[0].get_text()
        link = cells[0].find("a")["href"]
        link = "https://www.finanzen.net" + link
        isin = cells[1].get_text()
        wkn = cells[2].get_text()
        result_list.append((name, link, isin, wkn))

    # Filter Result if limit was given
    if limit > 0:
        # Decrease limit if bigger than result
        result_len = len(result_list)
        if limit > result_len:
            limit = result_len
        result_list = result_list[0:limit]

    # Return Result List as formatted String
    names = []
    for result in result_list:
        stock_name = result[0]
        short_name = re.search("aktien/(.+)-aktie", result[1]).group(1)
        names.append({
            'name': stock_name,
            'short_name': short_name,
            'isin': result[2],
            'wkn': result[3]
        })
    return names
Esempio n. 4
0
def get_etf_info(stock, output="dict"):

    # Parse User Input
    if output not in ["dict"]:
        raise ValueError("Only 'dict' supportet for now")

    # Load Data
    soup = _make_soup("https://www.finanzen.net/etf/" + stock)

    WKN = soup.find("span", text="WKN:").next_sibling.strip()
    ISIN = soup.find("span", text="ISIN:").next_sibling.strip()

    currentStockTable = soup.find("div",
                                  class_="table-responsive quotebox").table
    currentStockPrice = float(currentStockTable.tr.td.contents[0].replace(
        ",", "."))
    currentStockCurrency = currentStockTable.tr.td.span.contents[0]
    currentStockExchange = currentStockTable.find(
        "div",
        class_="quotebox-time").find_next_sibling("div").next_element.strip()

    baseDataTable = soup.find("h2", text="Wichtige Stammdaten").parent
    baseDataIssuer = baseDataTable.find("div", text="Emittent").parent.a.text
    baseDataBenchmark = baseDataTable.find("div",
                                           text="Benchmark").parent.find(
                                               "div", {
                                                   "title": True
                                               }).text
    baseDataFondsSize = float(
        baseDataTable.find("div", text="Fondsgröße").parent.find(
            "div", {
                "title": True
            }).text.replace(".", "").replace(",", "."))

    info = {
        "currentStockPrice": currentStockPrice,
        "currentStockCurrency": currentStockCurrency,
        "currentStockExchange": currentStockExchange,
        "WKN": WKN,
        "ISIN": ISIN,
        "Issuer": baseDataIssuer,
        "Benchmark": baseDataBenchmark,
        "FondsSize": baseDataFondsSize
    }

    if output == "dict":
        return info
Esempio n. 5
0
def get_fundamentals(stock: str, output="dataframe"):

    # Parse User Input
    if output not in ["dataframe", "dict"]:
        raise ValueError(
            "Please choose either 'dict' or 'dataframe' for input")

    # Convert name to lowercase
    stock = stock.lower()

    # Load Data
    soup = _make_soup("https://www.finanzen.net/bilanz_guv/" + stock)

    # Check for Error
    _check_site(soup)

    # Define Function to Parse Table
    def _parse_table(soup, signaler: str):
        table_dict = {}
        table = soup.find("h2", text=re.compile(signaler)).parent
        years = [int(x.get_text()) for x in table.find_all("th")[2:]]
        rows = table.find_all("tr")[1:]
        for row in rows:
            name = row.find("td", {"class": "font-bold"}).get_text()
            row_data = row.find_all("td")
            row_data = row_data[2:]
            row_data = [x.get_text() for x in row_data]
            row_data = [re.sub(r"\.", "", x) for x in row_data]
            row_data = [re.sub(",", ".", x) for x in row_data]
            row_data = [float(x) if x != "-" else None for x in row_data]
            table_dict[name] = dict(zip(years, row_data))
        return table_dict

    # Extract Stock Quote Info+
    try:
        quote_info = _parse_table(soup, "Die Aktie")
    except Exception:
        quote_info = None

    # Extract Key Ratios
    try:
        key_ratios = _parse_table(soup, "Unternehmenskennzahlen")
    except Exception:
        key_ratios = None

    # Extract Income Statement
    try:
        income_info = _parse_table(soup, "GuV")
    except Exception:
        income_info = None

    # Extract Balance Sheet
    try:
        balance_sheet = _parse_table(soup, "Bilanz")
    except Exception:
        balance_sheet = None

    # Extract Other Information
    try:
        other_info = _parse_table(soup, "sonstige Angaben")
    except Exception:
        other_info = None

    # Collect Fundamentals into single Directory
    fundamentals = {
        "Quotes": quote_info,
        "Key Ratios": key_ratios,
        "Income Statement": income_info,
        "Balance Sheet": balance_sheet,
        "Other": other_info
    }

    # Return Fundamentals if output is set to dict
    if output == "dict":
        return fundamentals
    else:
        df_list = []
        for f in fundamentals:
            for i in fundamentals[f]:
                df_tmp = pd.DataFrame({
                    "Category":
                    f,
                    "Metric":
                    i,
                    "Year":
                    list(fundamentals[f][i].keys()),
                    "Value":
                    list(fundamentals[f][i].values())
                })
                df_list.append(df_tmp)
        fundamentals_df = pd.concat(df_list)
        return fundamentals_df
Esempio n. 6
0
def get_fundamentals(stock: str):
    # Convert name to lowercase
    stock = stock.lower()

    # Load Data
    soup = _make_soup("https://www.finanzen.net/bilanz_guv/" + stock)

    # Check for Error
    _check_site(soup)

    # Define Function to Parse Table
    def _parse_table(soup, signaler: str):
        table_dict = {}
        table = soup.find("h2", text=re.compile(signaler)).parent
        years = [x.get_text() for x in table.find_all("th")[2:]]
        rows = table.find_all("tr")[1:]
        for row in rows:
            name = row.find("td", {"class": "font-bold"}).get_text()
            row_data = row.find_all("td")
            row_data = row_data[2:]
            row_data = [x.get_text() for x in row_data]
            row_data = [re.sub(r"\.", "", x) for x in row_data]
            row_data = [re.sub(",", ".", x) for x in row_data]
            row_data = [float(x) if x != "-" else None for x in row_data]
            table_dict[name] = dict(zip(years, row_data))
        return table_dict

    # Extract Stock Quote Info+
    try:
        quote_info = _parse_table(soup, "Die Aktie")
    except Exception:
        quote_info = None

    # Extract Key Ratios
    try:
        key_ratios = _parse_table(soup, "Unternehmenskennzahlen")
    except Exception:
        key_ratios = None

    # Extract Income Statement
    try:
        income_info = _parse_table(soup, "GuV")
    except Exception:
        income_info = None

    # Extract Balance Sheet
    try:
        balance_sheet = _parse_table(soup, "Bilanz")
    except Exception:
        balance_sheet = None

    # Extract Other Information
    try:
        other_info = _parse_table(soup, "sonstige Angaben")
    except Exception:
        other_info = None

    # Collect Fundamentals into single Directory
    fundamentals = {
        "Quotes": quote_info,
        "Key Ratios": key_ratios,
        "Income Statement": income_info,
        "Balance Sheet": balance_sheet,
        "Other": other_info
    }

    # Return Fundamentals
    return fundamentals