Esempio n. 1
0
bd = BusDay(sql)
crsp = CRSP(sql, bd, rdb)
logdir = os.path.join(settings['images'], 'weekrev')

# Construct weekly reversal
rebalbeg = 19730629  # increased stocks coverage in CRSP from around this date
rebalend = 20210101  # a Friday, so can include last week in 2020
wd = Weekly(sql, 'Fri', rebalbeg, rebalend)  # Generate Friday-end weekly cal

# Retrieve weekly returns, standardize scores, and compute returns and i.c.
june_universe = 0  # to track when reached a June end to update universe
year = 0  # to track new year to retrieve prices in batch for screening
res = DataFrame()
tic = time.time()
for rebaldate in wd.date_range(rebalbeg, rebalend)[:-1]:
    d = bd.june_universe(rebaldate)
    if d != june_universe:
        june_universe = d  # update universe every June
        univ = crsp.get_universe(june_universe)  # usual CRSP universe screen
        univ = univ[univ['decile'] < 10]  # drop smalest decile stocks
    start = wd.begwk(rebaldate)  # starting date of rebalance week
    beg = bd.offset(rebaldate, 1)  # beginning date of holding week
    end = wd.endwk(beg)  # ending date of holding week

    prcdate = bd.offset(start, -1)  # require price available at start of week
    prcyear = (prcdate // 10000) * 10000
    if prcyear != year:  # retrieve new batch of prices each new year
        year = prcyear
        prc = crsp.get_range('daily',
                             'prc',
                             'date',
ls = smf.ols("ret ~ BETA + BETA2 + RES", data=rets).fit()
print(ls.summary())
print(ls.get_robustcov_results('HC0').summary())
print(ls.get_robustcov_results('HAC', maxlags=3).summary())
print(
    ls.get_robustcov_results('hac-panel', groups=rets['port'],
                             maxlags=3).summary())
print(ls.get_robustcov_results('cluster', groups=rets['port']).summary())

## Fama MacBeth with individual stocks and standardized scores as loadings
rebalbeg = 19640601
rebalend = LAST_DATE
rebaldates = crsp.bd.date_range(rebalbeg, rebalend, 'endmo')
loadings = dict()
for pordate in rebaldates:  # retrieve signal values every month
    date = bd.june_universe(pordate)
    univ = crsp.get_universe(date)
    cap = np.sqrt(crsp.get_cap(date)['cap'])
    smb = -np.log(cap).rename('size')
    hml = signals('hml', date, bd.endmo(date, -12))['hml'].rename('value')
    beta = (signals('beta', pordate, bd.begmo(pordate))['beta'] * 2 / 3) + (1 /
                                                                            3)
    mom = signals('mom', pordate)['mom'].rename('momentum')
    df = pd.concat(
        (beta, hml, smb, mom),  # inner join of signals with univ
        join='inner',
        axis=1).reindex(univ.index).dropna()
    loadings[pordate] = winsorized(df, quantiles=[0.05, 0.95])

## Compute coefficients from FM cross-sectional regressions
riskpremium = RiskPremium(user, bench, 'RF', LAST_DATE)