Esempio n. 1
0
    def test_operations_evaluated_for_each_reference(self,
                                                     mock_fetch_data: Mock,
                                                     *mocks):
        eoe = ElectionOverElection(mock_dataset.fields.timestamp)

        mock_operation = Mock(name='mock_operation ', spec=f.Operation)
        mock_operation.alias, mock_operation.definition = 'mock_operation', mock_dataset.table.abc
        mock_operation.metrics = []

        mock_widget = f.Widget(mock_operation)
        mock_widget.transform = Mock()

        mock_df = {}
        mock_fetch_data.return_value = mock_df

        # Need to keep widget the last call in the chain otherwise the object gets cloned and the assertion won't work
        mock_dataset.query \
            .dimension(mock_dataset.fields.timestamp) \
            .reference(eoe) \
            .widget(mock_widget) \
            .fetch()

        mock_operation.apply.assert_has_calls([
            call(mock_df, None),
            call(mock_df, eoe),
        ])
Esempio n. 2
0
    def test_apply_to_timeseries_with_uni_dim_and_ref(self):
        rolling_mean = RollingMean(mock_dataset.fields.wins, 3)
        result = rolling_mean.apply(dimx2_date_str_ref_df, ElectionOverElection(mock_dataset.fields.timestamp))

        expected = pd.Series([nan, nan, nan, nan, 4 / 3, 0., 4 / 3, 2 / 3, 4 / 3, 4 / 3, 2 / 3],
                             name='$wins_eoe',
                             index=dimx2_date_str_ref_df.index)
        pandas.testing.assert_series_equal(expected, result)
Esempio n. 3
0
    def test_apply_to_timeseries_with_uni_dim_and_ref(self):
        cumprod = CumProd(mock_dataset.fields.wins)
        result = cumprod.apply(
            dimx2_date_str_ref_df,
            ElectionOverElection(mock_dataset.fields.timestamp))

        expected = pd.Series([2.0] + [0.0] * 10,
                             name='$wins_eoe',
                             index=dimx2_date_str_ref_df.index)
        pandas.testing.assert_series_equal(expected, result)
Esempio n. 4
0
    def test_time_series_ref(self):
        dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party]
        references = [ElectionOverElection(mock_dataset.fields.timestamp)]
        result = Pandas(mock_dataset.fields.votes).transform(dimx2_date_str_ref_df, dimensions, references)

        expected = dimx2_date_str_ref_df.copy()[[f('votes'), f('votes_eoe')]]
        expected.index.names = ['Timestamp', 'Party']
        expected.columns = ['Votes', 'Votes EoE']
        expected.columns.name = 'Metrics'
        expected = expected.applymap(format_float)

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 5
0
    def test_time_series_multi_ref(self):
        query_dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party]
        query_references = [ElectionOverElection(mock_dataset.fields.timestamp)]
        result = CSV(mock_dataset.fields.votes, mock_dataset.fields.wins) \
            .transform(dimx2_date_str_ref_df, mock_dataset, query_dimensions, query_references)

        expected = dimx2_date_str_ref_df.copy()[[f('votes'), f('votes_eoe'), f('wins'), f('wins_eoe')]]
        expected.index.names = ['Timestamp', 'Party']
        expected.columns = ['Votes', 'Votes EoE', 'Wins', 'Wins EoE']
        expected = expected.applymap(_format_float)

        self.assertEqual(expected.to_csv(**csv_options), result)
Esempio n. 6
0
    def test_apply_to_timeseries_with_uni_dim_and_ref(self):
        cummean = CumMean(mock_dataset.fields.votes)
        result = cummean.apply(
            dimx2_date_str_ref_df,
            ElectionOverElection(mock_dataset.fields.timestamp))

        expected = pd.Series([
            7579518.0, 1076384.0, 7072032.5, 4685666.5, 7503711.0,
            6316507.333333333, 8136969.0, 7688157.0, 8407797.0, 8635351.2,
            8364511.166666667
        ],
                             name='$votes_eoe',
                             index=dimx2_date_str_ref_df.index)
        pandas.testing.assert_series_equal(expected, result)
Esempio n. 7
0
    def test_hidden_ref_dimx2_date_str(self):
        dimensions = [
            mock_dataset.fields.timestamp, mock_dataset.fields.political_party
        ]
        references = [ElectionOverElection(mock_dataset.fields.timestamp)]
        result = CSV(mock_dataset.fields.votes,
                     hide=['votes_eoe']).transform(dimx2_date_str_ref_df,
                                                   dimensions, references)

        expected = dimx2_date_str_ref_df.copy()[[f('votes')]]
        expected.index.names = ['Timestamp', 'Party']
        expected.columns = ['Votes']
        expected.columns.name = 'Metrics'
        expected = expected.applymap(format_float_raw)

        self.assertEqual(expected.to_csv(**csv_options), result)