Esempio n. 1
0
    def test_time_series_dim(self):
        result = CSV(slicer.metrics.wins) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']

        self.assertEqual(expected.to_csv(), result)
Esempio n. 2
0
    def test_time_series_dim(self):
        result = CSV(slicer.metrics.wins) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']

        self.assertEqual(expected.to_csv(), result)
Esempio n. 3
0
    def test_time_series_dim(self):
        result = Pandas(slicer.metrics.wins) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 4
0
    def test_time_series_dim(self):
        result = Pandas(slicer.metrics.wins) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 5
0
    def test_sort_value_greater_than_number_of_columns_is_ignored(self):
        result = Pandas(slicer.metrics.wins, sort=[5]) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 6
0
    def test_sort_value_greater_than_number_of_columns_is_ignored(self):
        result = Pandas(slicer.metrics.wins, sort=[5]) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 7
0
    def test_multiple_metrics_sort_value_desc(self):
        result = Pandas(slicer.metrics.wins, sort=[1], ascending=[False]) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        expected = expected.sort_values(['Wins'], ascending=False)

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 8
0
    def test_multiple_metrics_sort_value_desc(self):
        result = Pandas(slicer.metrics.wins, sort=[1], ascending=[False]) \
            .transform(cont_dim_df, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('wins')]]
        expected.index.names = ['Timestamp']
        expected.columns = ['Wins']
        expected.columns.name = 'Metrics'

        expected = expected.sort_values(['Wins'], ascending=False)

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 9
0
    def test_metric_format(self):
        import copy
        votes = copy.copy(slicer.metrics.votes)
        votes.prefix = '$'
        votes.suffix = '€'
        votes.precision = 2

        # divide the data frame by 3 to get a repeating decimal so we can check precision
        result = Pandas(votes) \
            .transform(cont_dim_df / 3, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('votes')]]
        expected[fm('votes')] = ['${0:,.2f}€'.format(x)
                                 for x in expected[fm('votes')] / 3]
        expected.index.names = ['Timestamp']
        expected.columns = ['Votes']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)
Esempio n. 10
0
    def test_metric_format(self):
        import copy
        votes = copy.copy(slicer.metrics.votes)
        votes.prefix = '$'
        votes.suffix = '€'
        votes.precision = 2

        # divide the data frame by 3 to get a repeating decimal so we can check precision
        result = Pandas(votes) \
            .transform(cont_dim_df / 3, slicer, [slicer.dimensions.timestamp], [])

        expected = cont_dim_df.copy()[[fm('votes')]]
        expected[fm('votes')] = [
            '${0:,.2f}€'.format(x) for x in expected[fm('votes')] / 3
        ]
        expected.index.names = ['Timestamp']
        expected.columns = ['Votes']
        expected.columns.name = 'Metrics'

        pandas.testing.assert_frame_equal(expected, result)