Esempio n. 1
0
    def initialize(self, pc):
        self.options_prefix = f"{pc.getOptionsPrefix()}custom_primal_dual_"
        print(self.options_prefix)
        _, P = pc.getOperators()
        context = P.getPythonContext()
        appctx = self.get_appctx(pc)
        test, trial = context.a.arguments()
        appctx["V"] = test.function_space()
        if "state" in appctx and "velocity_space" in appctx:
            appctx["u_k"] = appctx["state"].split()[appctx["velocity_space"]]

        problem = appctx["problem"]
        linear_form = self.form(appctx, problem)

        self.a = self.assemble_ele_schur(linear_form)
        AA = Tensor(self.a)
        A = AA.blocks
        schur = A[1, 0] * A[0, 0].inv * A[0, 1]
        Q = A[1, 1]

        bcs = appctx["bcs"] if "bcs" in appctx else context.row_bcs
        self.A_schur = allocate_matrix(
            schur,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij",
            options_prefix=self.options_prefix)
        self._assemble_form_schur = create_assembly_callable(
            schur,
            tensor=self.A_schur,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form_schur()
        self.ksp_schur = self.setup_ksp(self.A_schur.petscmat, pc)

        self.A_Q = allocate_matrix(Q,
                                   bcs=bcs,
                                   form_compiler_parameters=context.fc_params,
                                   mat_type="aij",
                                   options_prefix=self.options_prefix)
        self._assemble_form_Q = create_assembly_callable(
            Q,
            tensor=self.A_Q,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form_Q()
        self.ksp_Q = self.setup_ksp(self.A_Q.petscmat, pc)
Esempio n. 2
0
    def initialize(self, pc):
        self.options_prefix = f"{pc.getOptionsPrefix()}custom_{self.prefix}_"
        print(self.options_prefix)
        _, P = pc.getOperators()
        context = P.getPythonContext()
        appctx = self.get_appctx(pc)
        test, trial = context.a.arguments()
        appctx["V"] = test.function_space()
        if "state" in appctx and "velocity_space" in appctx:
            appctx["u_k"] = appctx["state"].split()[appctx["velocity_space"]]

        problem = appctx["problem"]
        linear_form = self.form(appctx, problem)
        self.a = self.assemble_ele_schur(linear_form)

        bcs = appctx["bcs"] if "bcs" in appctx else context.row_bcs

        self.A = allocate_matrix(self.a,
                                 bcs=bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type="aij",
                                 options_prefix=self.options_prefix)
        self._assemble_form = create_assembly_callable(
            self.a,
            tensor=self.A,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form()
        self.ksp = self.setup_ksp(self.A.petscmat, pc)
Esempio n. 3
0
def assemble_firedrake(dual_lin, bcs=[]):
    matrix = allocate_matrix(dual_lin, bcs=bcs, mat_type="aij")
    _assemble_form = create_assembly_callable(
        dual_lin, tensor=matrix, bcs=bcs, mat_type="aij")
    _assemble_form()
    ai, aj, av = matrix.petscmat.getValuesCSR()
    matrix_scipy = sp.sparse.csr_matrix((av, aj, ai))
    return matrix_scipy
Esempio n. 4
0
 def _pjac(self):
     if self.mat_type != self.pmat_type or self._problem.Jp is not None:
         from firedrake.assemble import allocate_matrix
         return allocate_matrix(self.Jp,
                                bcs=self.bcs_Jp,
                                form_compiler_parameters=self.fcp,
                                mat_type=self.pmat_type,
                                appctx=self.appctx,
                                options_prefix=self.options_prefix)
     else:
         return self._jac
Esempio n. 5
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        opc = pc
        context = P.getPythonContext()
        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + "assembled_"

        # It only makes sense to preconditioner/invert a diagonal
        # block in general.  That's all we're going to allow.
        if not context.on_diag:
            raise ValueError("Only makes sense to invert diagonal block")

        mat_type = PETSc.Options().getString(options_prefix + "mat_type",
                                             "aij")
        self.P = allocate_matrix(context.a,
                                 bcs=context.row_bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=options_prefix)
        self._assemble_P = create_assembly_callable(
            context.a,
            tensor=self.P,
            bcs=context.row_bcs,
            form_compiler_parameters=context.fc_params,
            mat_type=mat_type)
        self._assemble_P()
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        tnullsp = P.getTransposeNullSpace()
        if tnullsp.handle != 0:
            Pmat.setTransposeNullSpace(tnullsp)

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create(comm=opc.comm)
        pc.incrementTabLevel(1, parent=opc)
        pc.setOptionsPrefix(options_prefix)
        pc.setOperators(Pmat, Pmat)
        pc.setFromOptions()
        pc.setUp()
        self.pc = pc
Esempio n. 6
0
File: morpc.py Progetto: DWolfr/mor
    def assembleK(self):
        ctx = self.ctx
        mat_type = PETSc.Options().getString(
            self.prefix + "assembled_mat_type", "aij")

        self.K = allocate_matrix(ctx.a,
                                 bcs=ctx.row_bcs,
                                 form_compiler_parameters=ctx.fc_params,
                                 mat_type=mat_type)

        self._assemble_K = create_assembly_callable(
            ctx.a,
            tensor=self.K,
            bcs=ctx.row_bcs,
            form_compiler_parameters=ctx.fc_params,
            mat_type=mat_type)
        self._assemble_K()

        self.mat_type = mat_type

        self.K.force_evaluation()
Esempio n. 7
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        context = P.getPythonContext()
        prefix = pc.getOptionsPrefix()

        # It only makes sense to preconditioner/invert a diagonal
        # block in general.  That's all we're going to allow.
        if not context.on_diag:
            raise ValueError("Only makes sense to invert diagonal block")

        mat_type = PETSc.Options().getString(prefix + "assembled_mat_type", "aij")
        self.P = allocate_matrix(context.a, bcs=context.row_bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type=mat_type)
        self._assemble_P = create_assembly_callable(context.a, tensor=self.P,
                                                    bcs=context.row_bcs,
                                                    form_compiler_parameters=context.fc_params,
                                                    mat_type=mat_type)
        self._assemble_P()
        self.mat_type = mat_type
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        Pmat.setTransposeNullSpace(P.getTransposeNullSpace())

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create()
        pc.setOptionsPrefix(prefix+"assembled_")
        pc.setOperators(Pmat, Pmat)
        pc.setUp()
        pc.setFromOptions()
        self.pc = pc
Esempio n. 8
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system. The eliminated
        variables are recovered via back-substitution.
        """

        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "condensed_field_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        self.bilinear_form = self.cxt.a

        # Retrieve the mixed function space
        W = self.bilinear_form.arguments()[0].function_space()
        if len(W) > 3:
            raise NotImplementedError("Only supports up to three function spaces.")

        elim_fields = PETSc.Options().getString(pc.getOptionsPrefix()
                                                + "pc_sc_eliminate_fields",
                                                None)
        if elim_fields:
            elim_fields = [int(i) for i in elim_fields.split(',')]
        else:
            # By default, we condense down to the last field in the
            # mixed space.
            elim_fields = [i for i in range(0, len(W) - 1)]

        condensed_fields = list(set(range(len(W))) - set(elim_fields))
        if len(condensed_fields) != 1:
            raise NotImplementedError("Cannot condense to more than one field")

        c_field, = condensed_fields

        # Need to duplicate a space which is NOT
        # associated with a subspace of a mixed space.
        Vc = FunctionSpace(W.mesh(), W[c_field].ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            if bc.function_space().index != c_field:
                raise NotImplementedError("Strong BC set on unsupported space")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Vc)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Vc, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.c_field = c_field
        self.condensed_rhs = Function(Vc)
        self.residual = Function(W)
        self.solution = Function(W)

        # Get expressions for the condensed linear system
        A = Tensor(self.bilinear_form)
        reduced_sys = self.condensed_system(A, self.residual, elim_fields)
        S_expr = reduced_sys.lhs
        r_expr = reduced_sys.rhs

        # Construct the condensed right-hand side
        self._assemble_Srhs = create_assembly_callable(
            r_expr,
            tensor=self.condensed_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Allocate and set the condensed operator
        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type)
        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Get nullspace for the condensed operator (if any).
        # This is provided as a user-specified callback which
        # returns the basis for the nullspace.
        nullspace = self.cxt.appctx.get("condensed_field_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vc)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up ksp for the condensed problem
        c_ksp = PETSc.KSP().create(comm=pc.comm)
        c_ksp.incrementTabLevel(1, parent=pc)
        c_ksp.setOptionsPrefix(prefix)
        c_ksp.setOperators(Smat)
        c_ksp.setUp()
        c_ksp.setFromOptions()
        self.condensed_ksp = c_ksp

        # Set up local solvers for backwards substitution
        self.local_solvers = self.local_solver_calls(A, self.residual,
                                                     self.solution,
                                                     elim_fields)
Esempio n. 9
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system. The eliminated
        variables are recovered via back-substitution.
        """

        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "condensed_field_"
        A, P = pc.getOperators()
        self.cxt = A.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        self.bilinear_form = self.cxt.a

        # Retrieve the mixed function space
        W = self.bilinear_form.arguments()[0].function_space()
        if len(W) > 3:
            raise NotImplementedError("Only supports up to three function spaces.")

        elim_fields = PETSc.Options().getString(pc.getOptionsPrefix()
                                                + "pc_sc_eliminate_fields",
                                                None)
        if elim_fields:
            elim_fields = [int(i) for i in elim_fields.split(',')]
        else:
            # By default, we condense down to the last field in the
            # mixed space.
            elim_fields = [i for i in range(0, len(W) - 1)]

        condensed_fields = list(set(range(len(W))) - set(elim_fields))
        if len(condensed_fields) != 1:
            raise NotImplementedError("Cannot condense to more than one field")

        c_field, = condensed_fields

        # Need to duplicate a space which is NOT
        # associated with a subspace of a mixed space.
        Vc = FunctionSpace(W.mesh(), W[c_field].ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            if bc.function_space().index != c_field:
                raise NotImplementedError("Strong BC set on unsupported space")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Vc)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Vc, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.c_field = c_field
        self.condensed_rhs = Function(Vc)
        self.residual = Function(W)
        self.solution = Function(W)

        # Get expressions for the condensed linear system
        A_tensor = Tensor(self.bilinear_form)
        reduced_sys = self.condensed_system(A_tensor, self.residual, elim_fields)
        S_expr = reduced_sys.lhs
        r_expr = reduced_sys.rhs

        # Construct the condensed right-hand side
        self._assemble_Srhs = create_assembly_callable(
            r_expr,
            tensor=self.condensed_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Allocate and set the condensed operator
        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix,
                                 appctx=self.get_appctx(pc))

        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        Smat = self.S.petscmat

        # If a different matrix is used for preconditioning,
        # assemble this as well
        if A != P:
            self.cxt_pc = P.getPythonContext()
            P_tensor = Tensor(self.cxt_pc.a)
            P_reduced_sys = self.condensed_system(P_tensor,
                                                  self.residual,
                                                  elim_fields)
            S_pc_expr = P_reduced_sys.lhs
            self.S_pc_expr = S_pc_expr

            # Allocate and set the condensed operator
            self.S_pc = allocate_matrix(S_expr,
                                        bcs=bcs,
                                        form_compiler_parameters=self.cxt.fc_params,
                                        mat_type=mat_type,
                                        options_prefix=prefix,
                                        appctx=self.get_appctx(pc))

            self._assemble_S_pc = create_assembly_callable(
                S_pc_expr,
                tensor=self.S_pc,
                bcs=bcs,
                form_compiler_parameters=self.cxt.fc_params,
                mat_type=mat_type)

            self._assemble_S_pc()
            Smat_pc = self.S_pc.petscmat

        else:
            self.S_pc_expr = S_expr
            Smat_pc = Smat

        # Get nullspace for the condensed operator (if any).
        # This is provided as a user-specified callback which
        # returns the basis for the nullspace.
        nullspace = self.cxt.appctx.get("condensed_field_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vc)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Create a SNESContext for the DM associated with the trace problem
        self._ctx_ref = self.new_snes_ctx(pc,
                                          S_expr,
                                          bcs,
                                          mat_type,
                                          self.cxt.fc_params,
                                          options_prefix=prefix)

        # Push new context onto the dm associated with the condensed problem
        c_dm = Vc.dm

        # Set up ksp for the condensed problem
        c_ksp = PETSc.KSP().create(comm=pc.comm)
        c_ksp.incrementTabLevel(1, parent=pc)

        # Set the dm for the condensed solver
        c_ksp.setDM(c_dm)
        c_ksp.setDMActive(False)
        c_ksp.setOptionsPrefix(prefix)
        c_ksp.setOperators(A=Smat, P=Smat_pc)
        self.condensed_ksp = c_ksp

        with dmhooks.add_hooks(c_dm, self,
                               appctx=self._ctx_ref,
                               save=False):
            c_ksp.setFromOptions()

        # Set up local solvers for backwards substitution
        self.local_solvers = self.local_solver_calls(A_tensor,
                                                     self.residual,
                                                     self.solution,
                                                     elim_fields)
Esempio n. 10
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, dx, \
            assemble, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        prefix = pc.getOptionsPrefix() + "pcd_"

        # we assume P has things stuffed inside of it
        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()
        if test.function_space() != trial.function_space():
            raise ValueError("Pressure space test and trial space differ")

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        mass = p*q*dx

        # Regularisation to avoid having to think about nullspaces.
        stiffness = inner(grad(p), grad(q))*dx + Constant(1e-6)*p*q*dx

        opts = PETSc.Options()
        # we're inverting Mp and Kp, so default them to assembled.
        # Fp only needs its action, so default it to mat-free.
        # These can of course be overridden.
        # only Fp is referred to in update, so that's the only
        # one we stash.
        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix+"Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix+"Kp_mat_type", default)
        self.Fp_mat_type = opts.getString(prefix+"Fp_mat_type", "matfree")

        Mp = assemble(mass, form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type)
        Kp = assemble(stiffness, form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type)

        Mp.force_evaluation()
        Kp.force_evaluation()

        # FIXME: Should we transfer nullspaces over.  I think not.

        Mksp = PETSc.KSP().create()
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create()
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        state = context.appctx["state"]

        Re = context.appctx.get("Re", 1.0)

        velid = context.appctx["velocity_space"]

        u0 = split(state)[velid]
        fp = 1.0/Re * inner(grad(p), grad(q))*dx + inner(u0, grad(p))*q*dx

        self.Re = Re
        self.Fp = allocate_matrix(fp, form_compiler_parameters=context.fc_params,
                                  mat_type=self.Fp_mat_type)
        self._assemble_Fp = create_assembly_callable(fp, tensor=self.Fp,
                                                     form_compiler_parameters=context.fc_params,
                                                     mat_type=self.Fp_mat_type)
        self._assemble_Fp()
        self.Fp.force_evaluation()
        Fpmat = self.Fp.petscmat
        self.workspace = [Fpmat.createVecLeft() for i in (0, 1)]
Esempio n. 11
0
    def initialize(self, pc):
        """ Set up the problem context. Takes the original
        mixed problem and transforms it into the equivalent
        hybrid-mixed system.

        A KSP object is created for the Lagrange multipliers
        on the top/bottom faces of the mesh cells.
        """

        from firedrake import (FunctionSpace, Function, Constant,
                               FiniteElement, TensorProductElement,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, interval, MixedElement,
                               BrokenElement)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace
        from ufl.cell import TensorProductCell

        # Extract PC context
        prefix = pc.getOptionsPrefix() + "vert_hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        # Magically determine which spaces are vector and scalar valued
        for i, Vi in enumerate(V):

            # Vector-valued spaces will have a non-empty value_shape
            if Vi.ufl_element().value_shape():
                self.vidx = i
            else:
                self.pidx = i

        Vv = V[self.vidx]
        Vp = V[self.pidx]

        # Create the space of approximate traces in the vertical.
        # NOTE: Technically a hack since the resulting space is technically
        # defined in cell interiors, however the degrees of freedom will only
        # be geometrically defined on edges. Arguments will only be used in
        # surface integrals
        deg, _ = Vv.ufl_element().degree()

        # Assumes a tensor product cell (quads, triangular-prisms, cubes)
        if not isinstance(Vp.ufl_element().cell(), TensorProductCell):
            raise NotImplementedError(
                "Currently only implemented for tensor product discretizations"
            )

        # Only want the horizontal cell
        cell, _ = Vp.ufl_element().cell()._cells

        DG = FiniteElement("DG", cell, deg)
        CG = FiniteElement("CG", interval, 1)
        Vv_tr_element = TensorProductElement(DG, CG)
        Vv_tr = FunctionSpace(mesh, Vv_tr_element)

        # Break the spaces
        broken_elements = MixedElement(
            [BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up relevant functions
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(Vv_tr)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up transfer kernels to and from the broken velocity space
        # NOTE: Since this snippet of code is used in a couple places in
        # in Gusto, might be worth creating a utility function that is
        # is importable and just called where needed.
        shapes = {
            "i": Vv.finat_element.space_dimension(),
            "j": np.prod(Vv.shape, dtype=int)
        }
        weight_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                w[i*{j} + j] += 1.0;
        """.format(**shapes)

        self.weight = Function(Vv)
        par_loop(weight_kernel, dx, {"w": (self.weight, INC)})

        # Averaging kernel
        self.average_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j];
        """.format(**shapes)
        # Original mixed operator replaced with "broken" arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(Vv_tr)
        n = FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        # Again, assumes tensor product structure. Why use this if you
        # don't have some form of vertical extrusion?
        Kform = gammar('+') * jump(sigma, n=n) * dS_h

        # Here we deal with boundary conditions
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc."
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * dot(sigma, n)
            measures = []
            trace_subdomains = []
            for subdomain in sorted(extruded_neumann_subdomains):
                measures.append({"top": ds_t, "bottom": ds_b}[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))

            measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
            markers = [int(x) for x in mesh.exterior_facets.unique_markers]
            dirichlet_subdomains = set(markers) - neumann_subdomains
            trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

        else:
            trace_subdomains = ["top", "bottom"]

        trace_bcs = [
            DirichletBC(Vv_tr, Constant(0.0), subdomain)
            for subdomain in trace_subdomains
        ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(Vv_tr)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("vert_trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vv_tr)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
Esempio n. 12
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, Function, DirichletBC, dx, \
             assemble, Mesh, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        prefix = pc.getOptionsPrefix() + "pcd_"

        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        nu = context.appctx["nu"]
        dt = context.appctx["dt"]

        mass = (1.0 / nu) * p * q * dx

        stiffness = inner(grad(p), grad(q)) * dx

        velid = context.appctx["velocity_space"]

        self.bcs = context.appctx["PCDbc"]

        opts = PETSc.Options()

        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix + "Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix + "Kp_mat_type", default)
        Fp_mat_type = opts.getString(prefix + "Fp_mat_type", "matfree")

        Mp = assemble(mass,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type,
                      options_prefix=prefix + "Mp_")

        Kp = assemble(stiffness,
                      bcs=self.bcs,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type,
                      options_prefix=prefix + "Kp_")

        Mksp = PETSc.KSP().create(comm=pc.comm)
        Mksp.incrementTabLevel(1, parent=pc)
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create(comm=pc.comm)
        Kksp.incrementTabLevel(1, parent=pc)
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        u = context.appctx["u"]
        fp = (1.0 / nu) * ((1.0 / dt) * p + dot(u, grad(p))) * q * dx

        Fp = allocate_matrix(fp,
                             form_compiler_parameters=context.fc_params,
                             mat_type=Fp_mat_type,
                             options_prefix=prefix + "Fp_")

        self._assemble_Fp = create_assembly_callable(
            fp,
            tensor=Fp,
            form_compiler_parameters=context.fc_params,
            mat_type=Fp_mat_type)

        self.Fp = Fp
        self._assemble_Fp()
        self.workspace = [Fp.petscmat.createVecLeft() for i in (0, 1)]

        self.tmp = Function(Q)
Esempio n. 13
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions), ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h
                     + gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc")
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError("Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"}
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain])
                trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand*measure

            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.ctx.fc_params,
                                                    mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
Esempio n. 14
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from ufl.algorithms.map_integrands import map_integrand_dags
        from firedrake import (FunctionSpace, TrialFunction, TrialFunctions,
                               TestFunction, Function, BrokenElement,
                               MixedElement, FacetNormal, Constant,
                               DirichletBC, Projector)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import ArgumentReplacer, split_form

        # Extract the problem context
        prefix = pc.getOptionsPrefix()
        _, P = pc.getOperators()
        context = P.getPythonContext()
        test, trial = context.a.arguments()

        V = test.function_space()
        if V.mesh().cell_set._extruded:
            # TODO: Merge FIAT branch to support TPC trace elements
            raise NotImplementedError("Not implemented on extruded meshes.")

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = [BrokenElement(Vi.ufl_element()) for Vi in V]
        elem = MixedElement(broken_elements)
        V_d = FunctionSpace(V.mesh(), elem)
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}

        # Replace the problems arguments with arguments defined
        # on the new discontinuous spaces
        replacer = ArgumentReplacer(arg_map)
        new_form = map_integrand_dags(replacer, context.a)

        # Create the space of approximate traces.
        # The vector function space will have a non-empty value_shape
        W = next(v for v in V if bool(v.ufl_element().value_shape()))
        if W.ufl_element().family() in ["Raviart-Thomas", "RTCF"]:
            tdegree = W.ufl_element().degree() - 1

        else:
            tdegree = W.ufl_element().degree()

        # NOTE: Once extruded is ready, we will need to be aware of this
        # and construct the appropriate trace space for the HDiv element
        TraceSpace = FunctionSpace(V.mesh(), "HDiv Trace", tdegree)

        # NOTE: For extruded, we will need to add "on_top" and "on_bottom"
        trace_conditions = [
            DirichletBC(TraceSpace, Constant(0.0), "on_boundary")
        ]

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_rhs = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_rhs = Function(V)

        # Create the symbolic Schur-reduction
        Atilde = Tensor(new_form)
        gammar = TestFunction(TraceSpace)
        n = FacetNormal(V.mesh())

        # Vector trial function will have a non-empty ufl_shape
        sigma = next(f for f in TrialFunctions(V_d) if bool(f.ufl_shape))

        # NOTE: Once extruded is ready, this will change slightly
        # to include both horizontal and vertical interior facets
        K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_rhs,
            tensor=self.schur_rhs,
            form_compiler_parameters=context.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_conditions,
                                 form_compiler_parameters=context.fc_params)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_conditions,
            form_compiler_parameters=context.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullsp = P.getNullSpace()
        if nullsp.handle != 0:
            new_vecs = get_trace_nullspace_vecs(K * Atilde.inv, nullsp, V, V_d,
                                                TraceSpace)
            tr_nullsp = PETSc.NullSpace().create(vectors=new_vecs,
                                                 comm=pc.comm)
            Smat.setNullSpace(tr_nullsp)

        # Set up the KSP for the system of Lagrange multipliers
        ksp = PETSc.KSP().create(comm=pc.comm)
        ksp.setOptionsPrefix(prefix + "trace_")
        ksp.setTolerances(rtol=1e-13)
        ksp.setOperators(Smat)
        ksp.setUp()
        ksp.setFromOptions()
        self.ksp = ksp

        # Now we construct the local tensors for the reconstruction stage
        # TODO: Add support for mixed tensors and these variables
        # become unnecessary
        split_forms = split_form(new_form)
        A = Tensor(next(sf.form for sf in split_forms if sf.indices == (0, 0)))
        B = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 0)))
        C = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 1)))
        trial = TrialFunction(
            FunctionSpace(V.mesh(), BrokenElement(W.ufl_element())))
        K_local = Tensor(gammar('+') * ufl.dot(trial, n) * ufl.dS)

        # Split functions and reconstruct each bit separately
        sigma_h, u_h = self.broken_solution.split()
        g, f = self.broken_rhs.split()

        # Pressure reconstruction
        M = B * A.inv * B.T + C
        u_sol = M.inv * f + M.inv * (
            B * A.inv * K_local.T * self.trace_solution - B * A.inv * g)
        self._assemble_pressure = create_assembly_callable(
            u_sol, tensor=u_h, form_compiler_parameters=context.fc_params)

        # Velocity reconstruction
        sigma_sol = A.inv * g + A.inv * (B.T * u_h -
                                         K_local.T * self.trace_solution)
        self._assemble_velocity = create_assembly_callable(
            sigma_sol,
            tensor=sigma_h,
            form_compiler_parameters=context.fc_params)

        # Set up the projector for projecting the broken solution
        # into the unbroken finite element spaces
        # NOTE: Tolerance here matters!
        sigma_b, _ = self.broken_solution.split()
        sigma_u, _ = self.unbroken_solution.split()
        self.projector = Projector(sigma_b,
                                   sigma_u,
                                   solver_parameters={
                                       "ksp_type": "cg",
                                       "ksp_rtol": 1e-13
                                   })
Esempio n. 15
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, assemble)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up the KSP for the hdiv residual projection
        hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_")

        # HDiv mass operator
        p = TrialFunction(V[self.vidx])
        q = TestFunction(V[self.vidx])
        mass = ufl.dot(p, q)*ufl.dx
        # TODO: Bcs?
        M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params)
        M.force_evaluation()
        Mmat = M.petscmat

        hdiv_mass_ksp.setOperators(Mmat)
        hdiv_mass_ksp.setUp()
        hdiv_mass_ksp.setFromOptions()
        self.hdiv_mass_ksp = hdiv_mass_ksp

        # Storing the result of A.inv * r, where A is the HDiv
        # mass matrix and r is the HDiv residual
        self._primal_r = Function(V[self.vidx])

        tau = TestFunction(V_d[self.vidx])
        self._assemble_broken_r = create_assembly_callable(
            ufl.dot(self._primal_r, tau)*ufl.dx,
            tensor=self.broken_residual.split()[self.vidx],
            form_compiler_parameters=self.cxt.fc_params)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.cxt.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS_h +
                     gammar('+') * ufl.dot(sigma, n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.cxt.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.cxt.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc")
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError("Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"}
            neumann_subdomains = neumann_subdomains.difference(extruded_neumann_subdomains)

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in extruded_neumann_subdomains:
                    measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain])
                trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.append(ds(tuple(neumann_subdomains)))
                dirichlet_subdomains = set(mesh.exterior_facets.unique_markers) - neumann_subdomains
                trace_subdomains.append(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand*measure

            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullspace = create_schur_nullspace(P, -K * Atilde,
                                           V, V_d, TraceSpace,
                                           pc.comm)
        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)

        # NOTE: The projection stage *might* be replaced by a Fortin
        # operator. We may want to allow the user to specify if they
        # wish to use a Fortin operator over a projection, or vice-versa.
        # In a future add-on, we can add a switch which chooses either
        # the Fortin reconstruction or the usual KSP projection.

        # Set up the projection KSP
        hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_')

        # Reuse the mass operator from the hdiv_mass_ksp
        hdiv_projection_ksp.setOperators(Mmat)

        # Construct the RHS for the projection stage
        self._projection_rhs = Function(V[self.vidx])
        self._assemble_projection_rhs = create_assembly_callable(
            ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx,
            tensor=self._projection_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Finalize ksp setup
        hdiv_projection_ksp.setUp()
        hdiv_projection_ksp.setFromOptions()
        self.hdiv_projection_ksp = hdiv_projection_ksp
Esempio n. 16
0
    def __init__(self, problem, mat_type, pmat_type, appctx=None, pre_jacobian_callback=None, pre_function_callback=None):
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        if pmat_type is None:
            pmat_type = mat_type
        self.mat_type = mat_type
        self.pmat_type = pmat_type

        matfree = mat_type == 'matfree'
        pmatfree = pmat_type == 'matfree'

        self._problem = problem
        self._pre_jacobian_callback = pre_jacobian_callback
        self._pre_function_callback = pre_function_callback

        fcp = problem.form_compiler_parameters
        # Function to hold current guess
        self._x = problem.u

        if appctx is None:
            appctx = {}

        if matfree or pmatfree:
            # A split context will already get the full state.
            # TODO, a better way of doing this.
            # Now we don't have a temporary state inside the snes
            # context we could just require the user to pass in the
            # full state on the outside.
            appctx.setdefault("state", self._x)

        self.appctx = appctx
        self.matfree = matfree
        self.pmatfree = pmatfree
        self.F = problem.F
        self.J = problem.J

        self._jac = allocate_matrix(self.J, bcs=problem.bcs,
                                    form_compiler_parameters=fcp,
                                    mat_type=mat_type,
                                    appctx=appctx)
        self._assemble_jac = create_assembly_callable(self.J,
                                                      tensor=self._jac,
                                                      bcs=problem.bcs,
                                                      form_compiler_parameters=fcp,
                                                      mat_type=mat_type)

        self.is_mixed = self._jac.block_shape != (1, 1)

        if mat_type != pmat_type or problem.Jp is not None:
            # Need separate pmat if either Jp is different or we want
            # a different pmat type to the mat type.
            if problem.Jp is None:
                self.Jp = self.J
            else:
                self.Jp = problem.Jp
            self._pjac = allocate_matrix(self.Jp, bcs=problem.bcs,
                                         form_compiler_parameters=fcp,
                                         mat_type=pmat_type,
                                         appctx=appctx)

            self._assemble_pjac = create_assembly_callable(self.Jp,
                                                           tensor=self._pjac,
                                                           bcs=problem.bcs,
                                                           form_compiler_parameters=fcp,
                                                           mat_type=pmat_type)
        else:
            # pmat_type == mat_type and Jp is None
            self.Jp = None
            self._pjac = self._jac

        self._F = function.Function(self.F.arguments()[0].function_space())
        self._assemble_residual = create_assembly_callable(self.F,
                                                           tensor=self._F,
                                                           form_compiler_parameters=fcp)

        self._jacobian_assembled = False
        self._splits = {}
        self._coarse = None
        self._fine = None
Esempio n. 17
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field hybridized system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system for the Lagrange
        multipliers. The scalar and flux fields are reconstructed
        locally.
        """
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "hybrid_sc_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        # Retrieve the mixed function space, which is expected to
        # be of the form: W = (DG_k)^n \times DG_k \times DG_trace
        W = self.cxt.a.arguments()[0].function_space()
        if len(W) != 3:
            raise RuntimeError("Expecting three function spaces.")

        # Assert a specific ordering of the spaces
        # TODO: Clean this up
        assert W[2].ufl_element().family() == "HDiv Trace"

        # Extract trace space
        T = W[2]

        # Need to duplicate a trace space which is NOT
        # associated with a subspace of a mixed space.
        Tr = FunctionSpace(T.mesh(), T.ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            assert bc.function_space() == T, (
                "BCs should be imposing vanishing conditions on traces")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Tr)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Tr, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.r_lambda = Function(T)
        self.residual = Function(W)
        self.solution = Function(W)

        # Perform symbolics only once
        S_expr, r_lambda_expr, u_h_expr, q_h_expr = self._slate_expressions

        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type)
        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        Smat = self.S.petscmat

        # Set up ksp for the trace problem
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.incrementTabLevel(1, parent=pc)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        self._assemble_Srhs = create_assembly_callable(
            r_lambda_expr,
            tensor=self.r_lambda,
            form_compiler_parameters=self.cxt.fc_params)

        q_h, u_h, lambda_h = self.solution.split()

        # Assemble u_h using lambda_h
        self._assemble_u = create_assembly_callable(
            u_h_expr, tensor=u_h, form_compiler_parameters=self.cxt.fc_params)

        # Recover q_h using both u_h and lambda_h
        self._assemble_q = create_assembly_callable(
            q_h_expr, tensor=q_h, form_compiler_parameters=self.cxt.fc_params)
Esempio n. 18
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        opc = pc
        appctx = self.get_appctx(pc)
        fcp = appctx.get("form_compiler_parameters")

        V = get_function_space(pc.getDM())
        if len(V) == 1:
            V = FunctionSpace(V.mesh(), V.ufl_element())
        else:
            V = MixedFunctionSpace([V_ for V_ in V])
        test = TestFunction(V)
        trial = TrialFunction(V)

        if P.type == "python":
            context = P.getPythonContext()
            # It only makes sense to preconditioner/invert a diagonal
            # block in general.  That's all we're going to allow.
            if not context.on_diag:
                raise ValueError("Only makes sense to invert diagonal block")

        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + self._prefix

        mat_type = PETSc.Options().getString(options_prefix + "mat_type", "aij")

        (a, bcs) = self.form(pc, test, trial)

        self.P = allocate_matrix(a, bcs=bcs,
                                 form_compiler_parameters=fcp,
                                 mat_type=mat_type,
                                 options_prefix=options_prefix)
        self._assemble_P = create_assembly_callable(a, tensor=self.P,
                                                    bcs=bcs,
                                                    form_compiler_parameters=fcp,
                                                    mat_type=mat_type)
        self._assemble_P()
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        tnullsp = P.getTransposeNullSpace()
        if tnullsp.handle != 0:
            Pmat.setTransposeNullSpace(tnullsp)

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create(comm=opc.comm)
        pc.incrementTabLevel(1, parent=opc)

        # We set a DM and an appropriate SNESContext on the constructed PC so one
        # can do e.g. multigrid or patch solves.
        from firedrake.variational_solver import NonlinearVariationalProblem
        from firedrake.solving_utils import _SNESContext
        dm = opc.getDM()
        octx = get_appctx(dm)
        oproblem = octx._problem
        nproblem = NonlinearVariationalProblem(oproblem.F, oproblem.u, bcs, J=a, form_compiler_parameters=fcp)
        nctx = _SNESContext(nproblem, mat_type, mat_type, octx.appctx)
        push_appctx(dm, nctx)
        self._ctx_ref = nctx
        pc.setDM(dm)

        pc.setOptionsPrefix(options_prefix)
        pc.setOperators(Pmat, Pmat)
        pc.setFromOptions()
        pc.setUp()
        self.pc = pc
        pop_appctx(dm)
Esempio n. 19
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        H1-problem and partition the spaces/functions
        into 'interior' and 'facet' parts.

        A KSP is created for the reduced system after
        static condensation is applied.
        """
        from firedrake import (FunctionSpace, Function, TrialFunction,
                               TestFunction)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from ufl.algorithms.replace import replace

        # Extract python context
        prefix = pc.getOptionsPrefix() + "static_condensation_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()
        V = test.function_space()
        mesh = V.mesh()

        if len(V) > 1:
            raise ValueError("Cannot use this PC for mixed problems.")

        if V.ufl_element().sobolev_space().name != "H1":
            raise ValueError("Expecting an H1-conforming element.")

        if not V.ufl_element().cell().is_simplex():
            raise NotImplementedError("Only simplex meshes are implemented.")

        top_dim = V.finat_element._element.ref_el.get_dimension()
        if not V.finat_element.entity_dofs()[top_dim][0]:
            raise RuntimeError("There are no interior dofs to eliminate.")

        # We decompose the space into an interior part and facet part
        interior_element = V.ufl_element()["interior"]
        facet_element = V.ufl_element()["facet"]
        V_int = FunctionSpace(mesh, interior_element)
        V_facet = FunctionSpace(mesh, facet_element)

        # Get transfer kernel for moving data
        self._transfer_kernel = get_transfer_kernels({
            'h1-space': V,
            'interior-space': V_int,
            'facet-space': V_facet
        })

        # Set up functions for the H1 functions and the interior/trace parts
        self.trace_solution = Function(V_facet)
        self.interior_solution = Function(V_int)
        self.h1_solution = Function(V)
        self.h1_residual = Function(V)
        self.interior_residual = Function(V_int)
        self.trace_residual = Function(V_facet)

        # TODO: Handle strong bcs in Slate
        if self.cxt.row_bcs:
            raise NotImplementedError("Strong bcs not implemented yet")

        self.bcs = None

        A00 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_int),
                trial: TrialFunction(V_int)
            }))
        A01 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_int),
                trial: TrialFunction(V_facet)
            }))
        A10 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_facet),
                trial: TrialFunction(V_int)
            }))
        A11 = Tensor(
            replace(self.cxt.a, {
                test: TestFunction(V_facet),
                trial: TrialFunction(V_facet)
            }))

        # Schur complement operator
        S = A11 - A10 * A00.inv * A01
        self.S = allocate_matrix(S,
                                 bcs=self.bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(
            S,
            tensor=self.S,
            bcs=self.bcs,
            form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        Smat = self.S.petscmat

        # Nullspace for the reduced system
        nullspace = create_sc_nullspace(P, V, V_facet, pc.comm)

        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up KSP for the reduced problem
        sc_ksp = PETSc.KSP().create(comm=pc.comm)
        sc_ksp.setOptionsPrefix(prefix)
        sc_ksp.setOperators(Smat)
        sc_ksp.setUp()
        sc_ksp.setFromOptions()
        self.sc_ksp = sc_ksp

        # Set up rhs for the reduced problem
        F0 = AssembledVector(self.interior_residual)
        self.sc_rhs = Function(V_facet)
        self.sc_rhs_thunk = Function(V_facet)
        self._assemble_sc_rhs_thunk = create_assembly_callable(
            -A10 * A00.inv * F0,
            tensor=self.sc_rhs_thunk,
            form_compiler_parameters=self.cxt.fc_params)

        # Reconstruction calls
        u_facet = AssembledVector(self.trace_solution)
        self._assemble_interior_u = create_assembly_callable(
            A00.inv * (F0 - A01 * u_facet),
            tensor=self.interior_solution,
            form_compiler_parameters=self.cxt.fc_params)