Esempio n. 1
0
    def action(self, **kwargs):
        r"""Return the action functional that gives the hybrid model as its
        Euler-Lagrange equations"""
        u, h = itemgetter("velocity", "thickness")(kwargs)
        mesh = u.ufl_domain()
        ice_front_ids = tuple(kwargs.pop("ice_front_ids", ()))
        side_wall_ids = tuple(kwargs.pop("side_wall_ids", ()))

        metadata = {"quadrature_degree": self.quadrature_degree(**kwargs)}
        dx = firedrake.dx(metadata=metadata)
        ds_b = firedrake.ds_b(domain=mesh, metadata=metadata)
        ds_v = firedrake.ds_v(domain=mesh)

        viscosity = self.viscosity(**kwargs) * dx
        gravity = self.gravity(**kwargs) * dx
        friction = self.friction(**kwargs) * ds_b

        side_friction = self.side_friction(**kwargs) * ds_v(side_wall_ids)
        if get_mesh_axes(mesh) == "xyz":
            penalty = self.penalty(**kwargs) * ds_v(side_wall_ids)
        else:
            penalty = 0.0

        xdegree_u, zdegree_u = u.ufl_element().degree()
        degree_h = h.ufl_element().degree()[0]
        degree = (xdegree_u + degree_h, 2 * zdegree_u + 1)
        ds_t = firedrake.ds_v(ice_front_ids,
                              metadata={"quadrature_degree": degree})
        terminus = self.terminus(**kwargs) * ds_t

        return viscosity + friction + side_friction - gravity - terminus + penalty
Esempio n. 2
0
def test_advection():
    E_initial = firedrake.interpolate(E_surface + q_bed / α * h * (1 - ζ), Q)
    E = E_initial.copy(deepcopy=True)

    u0 = 100.0
    du = 100.0
    u_expr = as_vector((u0 + du * x / Lx, 0))
    u = firedrake.interpolate(u_expr, V)
    w = firedrake.interpolate((-du / Lx + dh / Lx / h * u[0]) * ζ, W)

    dt = 10.0
    final_time = Lx / u0
    num_steps = int(final_time / dt) + 1
    model = icepack.models.HeatTransport3D()
    for step in range(num_steps):
        model._advect(dt,
                      E=E,
                      u=u,
                      w=w,
                      h=h,
                      s=s,
                      E_inflow=E_initial,
                      E_surface=Constant(E_surface))

    error_surface = assemble((E - E_surface)**2 * ds_t)
    assert error_surface / assemble(E_surface**2 * ds_t(mesh)) < 1e-2
    error_bed = assemble((E - E_initial)**2 * ds_b)
    assert error_bed / assemble(E_initial**2 * ds_b(mesh)) < 1e-2
Esempio n. 3
0
    def scale(self, **kwargs):
        r"""Return the positive, convex part of the action functional

        The positive part of the action functional is used as a dimensional
        scale to determine when to terminate an optimization algorithm.
        """
        u = kwargs["velocity"]
        mesh = u.ufl_domain()
        metadata = {"quadrature_degree": self.quadrature_degree(**kwargs)}
        dx = firedrake.dx(metadata=metadata)
        ds_b = firedrake.ds_b(domain=mesh, metadata=metadata)
        return self.viscosity(**kwargs) * dx + self.friction(**kwargs) * ds_b
Esempio n. 4
0
def test_advection():
    E_initial = firedrake.interpolate(E_surface + q_bed / α * h * (1 - ζ), Q)
    E = E_initial.copy(deepcopy=True)

    # Subclass the heat transport model and turn off diffusion so that we can
    # test advection by itself
    class AdvectionTransportModel(icepack.models.HeatTransport3D):
        def __init__(self):
            super(AdvectionTransportModel, self).__init__()

        def diffusive_flux(self, **kwargs):
            E = kwargs["energy"]
            h = kwargs["thickness"]
            Q = E.function_space()
            ψ = firedrake.TestFunction(Q)
            return Constant(0) * ψ * h * dx

    model = AdvectionTransportModel()
    solver = icepack.solvers.HeatTransportSolver(model)

    u0 = 100.0
    du = 100.0
    u_expr = as_vector((u0 + du * x / Lx, 0))
    u = firedrake.interpolate(u_expr, V)
    w = firedrake.interpolate((-du / Lx + dh / Lx / h * u[0]) * ζ, W)

    dt = 10.0
    final_time = Lx / u0
    num_steps = int(final_time / dt) + 1
    for step in range(num_steps):
        E = solver.solve(
            dt,
            energy=E,
            velocity=u,
            vertical_velocity=w,
            thickness=h,
            surface=s,
            heat=Constant(0),
            heat_bed=Constant(q_bed),
            energy_inflow=E_initial,
            energy_surface=Constant(E_surface),
        )

    error_surface = assemble((E - E_surface)**2 * ds_t)
    assert error_surface / assemble(E_surface**2 * ds_t(mesh)) < 1e-2
    error_bed = assemble((E - E_initial)**2 * ds_b)
    assert error_bed / assemble(E_initial**2 * ds_b(mesh)) < 1e-2
Esempio n. 5
0
 def __init__(self, domain, degree):
     self.ds_v = ds_v(domain=domain, degree=degree)
     self.ds_t = ds_t(domain=domain, degree=degree)
     self.ds_b = ds_b(domain=domain, degree=degree)
Esempio n. 6
0
    def _setup_solver(self):
        import numpy as np

        state = self.state
        dt = state.dt
        beta_ = dt * self.alpha
        cp = state.parameters.cp
        Vu = state.spaces("HDiv")
        Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element()))
        Vtheta = state.spaces("theta")
        Vrho = state.spaces("DG")

        # Store time-stepping coefficients as UFL Constants
        beta = Constant(beta_)
        beta_cp = Constant(beta_ * cp)

        h_deg = Vrho.ufl_element().degree()[0]
        v_deg = Vrho.ufl_element().degree()[1]
        Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg))

        # Split up the rhs vector (symbolically)
        self.xrhs = Function(self.equations.function_space)
        u_in, rho_in, theta_in = split(self.xrhs)[0:3]

        # Build the function space for "broken" u, rho, and pressure trace
        M = MixedFunctionSpace((Vu_broken, Vrho, Vtrace))
        w, phi, dl = TestFunctions(M)
        u, rho, l0 = TrialFunctions(M)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.fields("thetabar")
        rhobar = state.fields("rhobar")
        exnerbar = thermodynamics.exner_pressure(state.parameters, rhobar,
                                                 thetabar)
        exnerbar_rho = thermodynamics.dexner_drho(state.parameters, rhobar,
                                                  thetabar)
        exnerbar_theta = thermodynamics.dexner_dtheta(state.parameters, rhobar,
                                                      thetabar)

        # Analytical (approximate) elimination of theta
        k = state.k  # Upward pointing unit vector
        theta = -dot(k, u) * dot(k, grad(thetabar)) * beta + theta_in

        # Only include theta' (rather than exner') in the vertical
        # component of the gradient

        # The exner prime term (here, bars are for mean and no bars are
        # for linear perturbations)
        exner = exnerbar_theta * theta + exnerbar_rho * rho

        # Vertical projection
        def V(u):
            return k * inner(u, k)

        # hydrostatic projection
        h_project = lambda u: u - k * inner(u, k)

        # Specify degree for some terms as estimated degree is too large
        dxp = dx(degree=(self.quadrature_degree))
        dS_vp = dS_v(degree=(self.quadrature_degree))
        dS_hp = dS_h(degree=(self.quadrature_degree))
        ds_vp = ds_v(degree=(self.quadrature_degree))
        ds_tbp = (ds_t(degree=(self.quadrature_degree)) +
                  ds_b(degree=(self.quadrature_degree)))

        # Add effect of density of water upon theta
        if self.moisture is not None:
            water_t = Function(Vtheta).assign(0.0)
            for water in self.moisture:
                water_t += self.state.fields(water)
            theta_w = theta / (1 + water_t)
            thetabar_w = thetabar / (1 + water_t)
        else:
            theta_w = theta
            thetabar_w = thetabar

        _l0 = TrialFunction(Vtrace)
        _dl = TestFunction(Vtrace)
        a_tr = _dl('+') * _l0('+') * (
            dS_vp + dS_hp) + _dl * _l0 * ds_vp + _dl * _l0 * ds_tbp

        def L_tr(f):
            return _dl('+') * avg(f) * (
                dS_vp + dS_hp) + _dl * f * ds_vp + _dl * f * ds_tbp

        cg_ilu_parameters = {
            'ksp_type': 'cg',
            'pc_type': 'bjacobi',
            'sub_pc_type': 'ilu'
        }

        # Project field averages into functions on the trace space
        rhobar_avg = Function(Vtrace)
        exnerbar_avg = Function(Vtrace)

        rho_avg_prb = LinearVariationalProblem(a_tr, L_tr(rhobar), rhobar_avg)
        exner_avg_prb = LinearVariationalProblem(a_tr, L_tr(exnerbar),
                                                 exnerbar_avg)

        rho_avg_solver = LinearVariationalSolver(
            rho_avg_prb,
            solver_parameters=cg_ilu_parameters,
            options_prefix='rhobar_avg_solver')
        exner_avg_solver = LinearVariationalSolver(
            exner_avg_prb,
            solver_parameters=cg_ilu_parameters,
            options_prefix='exnerbar_avg_solver')

        with timed_region("Gusto:HybridProjectRhobar"):
            rho_avg_solver.solve()

        with timed_region("Gusto:HybridProjectExnerbar"):
            exner_avg_solver.solve()

        # "broken" u, rho, and trace system
        # NOTE: no ds_v integrals since equations are defined on
        # a periodic (or sphere) base mesh.
        if any([t.has_label(hydrostatic) for t in self.equations.residual]):
            u_mass = inner(w, (h_project(u) - u_in)) * dx
        else:
            u_mass = inner(w, (u - u_in)) * dx

        eqn = (
            # momentum equation
            u_mass - beta_cp * div(theta_w * V(w)) * exnerbar * dxp
            # following does nothing but is preserved in the comments
            # to remind us why (because V(w) is purely vertical).
            # + beta_cp*jump(theta_w*V(w), n=n)*exnerbar_avg('+')*dS_vp
            + beta_cp * jump(theta_w * V(w), n=n) * exnerbar_avg('+') * dS_hp +
            beta_cp * dot(theta_w * V(w), n) * exnerbar_avg * ds_tbp -
            beta_cp * div(thetabar_w * w) * exner * dxp
            # trace terms appearing after integrating momentum equation
            + beta_cp * jump(thetabar_w * w, n=n) * l0('+') * (dS_vp + dS_hp) +
            beta_cp * dot(thetabar_w * w, n) * l0 * (ds_tbp + ds_vp)
            # mass continuity equation
            + (phi *
               (rho - rho_in) - beta * inner(grad(phi), u) * rhobar) * dx +
            beta * jump(phi * u, n=n) * rhobar_avg('+') * (dS_v + dS_h)
            # term added because u.n=0 is enforced weakly via the traces
            + beta * phi * dot(u, n) * rhobar_avg * (ds_tb + ds_v)
            # constraint equation to enforce continuity of the velocity
            # through the interior facets and weakly impose the no-slip
            # condition
            + dl('+') * jump(u, n=n) * (dS_vp + dS_hp) + dl * dot(u, n) *
            (ds_tbp + ds_vp))

        # contribution of the sponge term
        if hasattr(self.equations, "mu"):
            eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx

        aeqn = lhs(eqn)
        Leqn = rhs(eqn)

        # Function for the hybridized solutions
        self.urhol0 = Function(M)

        hybridized_prb = LinearVariationalProblem(aeqn, Leqn, self.urhol0)
        hybridized_solver = LinearVariationalSolver(
            hybridized_prb,
            solver_parameters=self.solver_parameters,
            options_prefix='ImplicitSolver')
        self.hybridized_solver = hybridized_solver

        # Project broken u into the HDiv space using facet averaging.
        # Weight function counting the dofs of the HDiv element:
        shapes = {
            "i": Vu.finat_element.space_dimension(),
            "j": np.prod(Vu.shape, dtype=int)
        }
        weight_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                w[i*{j} + j] += 1.0;
        """.format(**shapes)

        self._weight = Function(Vu)
        par_loop(weight_kernel, dx, {"w": (self._weight, INC)})

        # Averaging kernel
        self._average_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j];
        """.format(**shapes)

        # HDiv-conforming velocity
        self.u_hdiv = Function(Vu)

        # Reconstruction of theta
        theta = TrialFunction(Vtheta)
        gamma = TestFunction(Vtheta)

        self.theta = Function(Vtheta)
        theta_eqn = gamma * (theta - theta_in + dot(k, self.u_hdiv) *
                             dot(k, grad(thetabar)) * beta) * dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn),
                                                 rhs(theta_eqn), self.theta)
        self.theta_solver = LinearVariationalSolver(
            theta_problem,
            solver_parameters=cg_ilu_parameters,
            options_prefix='thetabacksubstitution')

        # Store boundary conditions for the div-conforming velocity to apply
        # post-solve
        self.bcs = self.equations.bcs['u']
Esempio n. 7
0
    def _setup_solver(self):
        from firedrake.assemble import create_assembly_callable
        import numpy as np

        state = self.state
        dt = state.timestepping.dt
        beta = dt*state.timestepping.alpha
        cp = state.parameters.cp
        mu = state.mu
        Vu = state.spaces("HDiv")
        Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element()))
        Vtheta = state.spaces("HDiv_v")
        Vrho = state.spaces("DG")

        h_deg = state.horizontal_degree
        v_deg = state.vertical_degree
        Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg))

        # Split up the rhs vector (symbolically)
        u_in, rho_in, theta_in = split(state.xrhs)

        # Build the function space for "broken" u and rho
        # and add the trace variable
        M = MixedFunctionSpace((Vu_broken, Vrho))
        w, phi = TestFunctions(M)
        u, rho = TrialFunctions(M)
        l0 = TrialFunction(Vtrace)
        dl = TestFunction(Vtrace)

        n = FacetNormal(state.mesh)

        # Get background fields
        thetabar = state.fields("thetabar")
        rhobar = state.fields("rhobar")
        pibar = thermodynamics.pi(state.parameters, rhobar, thetabar)
        pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar)
        pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar)

        # Analytical (approximate) elimination of theta
        k = state.k             # Upward pointing unit vector
        theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in

        # Only include theta' (rather than pi') in the vertical
        # component of the gradient

        # The pi prime term (here, bars are for mean and no bars are
        # for linear perturbations)
        pi = pibar_theta*theta + pibar_rho*rho

        # Vertical projection
        def V(u):
            return k*inner(u, k)

        # Specify degree for some terms as estimated degree is too large
        dxp = dx(degree=(self.quadrature_degree))
        dS_vp = dS_v(degree=(self.quadrature_degree))
        dS_hp = dS_h(degree=(self.quadrature_degree))
        ds_vp = ds_v(degree=(self.quadrature_degree))
        ds_tbp = ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree))

        # Mass matrix for the trace space
        tM = assemble(dl('+')*l0('+')*(dS_v + dS_h)
                      + dl*l0*ds_v + dl*l0*(ds_t + ds_b))

        Lrhobar = Function(Vtrace)
        Lpibar = Function(Vtrace)
        rhopi_solver = LinearSolver(tM, solver_parameters={'ksp_type': 'cg',
                                                           'pc_type': 'bjacobi',
                                                           'sub_pc_type': 'ilu'},
                                    options_prefix='rhobarpibar_solver')

        rhobar_avg = Function(Vtrace)
        pibar_avg = Function(Vtrace)

        def _traceRHS(f):
            return (dl('+')*avg(f)*(dS_v + dS_h)
                    + dl*f*ds_v + dl*f*(ds_t + ds_b))

        assemble(_traceRHS(rhobar), tensor=Lrhobar)
        assemble(_traceRHS(pibar), tensor=Lpibar)

        # Project averages of coefficients into the trace space
        with timed_region("Gusto:HybridProjectRhobar"):
            rhopi_solver.solve(rhobar_avg, Lrhobar)

        with timed_region("Gusto:HybridProjectPibar"):
            rhopi_solver.solve(pibar_avg, Lpibar)

        # Add effect of density of water upon theta
        if self.moisture is not None:
            water_t = Function(Vtheta).assign(0.0)
            for water in self.moisture:
                water_t += self.state.fields(water)
            theta_w = theta / (1 + water_t)
            thetabar_w = thetabar / (1 + water_t)
        else:
            theta_w = theta
            thetabar_w = thetabar

        # "broken" u and rho system
        Aeqn = (inner(w, (state.h_project(u) - u_in))*dx
                - beta*cp*div(theta_w*V(w))*pibar*dxp
                # following does nothing but is preserved in the comments
                # to remind us why (because V(w) is purely vertical).
                # + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_vp
                + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_hp
                + beta*cp*dot(theta_w*V(w), n)*pibar_avg*ds_tbp
                - beta*cp*div(thetabar_w*w)*pi*dxp
                + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx
                + beta*dot(phi*u, n)*rhobar_avg('+')*(dS_v + dS_h))

        if mu is not None:
            Aeqn += dt*mu*inner(w, k)*inner(u, k)*dx

        # Form the mixed operators using Slate
        # (A   K)(X) = (X_r)
        # (K.T 0)(l)   (0  )
        # where X = ("broken" u, rho)
        A = Tensor(lhs(Aeqn))
        X_r = Tensor(rhs(Aeqn))

        # Off-diagonal block matrices containing the contributions
        # of the Lagrange multipliers (surface terms in the momentum equation)
        K = Tensor(beta*cp*dot(thetabar_w*w, n)*l0('+')*(dS_vp + dS_hp)
                   + beta*cp*dot(thetabar_w*w, n)*l0*ds_vp
                   + beta*cp*dot(thetabar_w*w, n)*l0*ds_tbp)

        # X = A.inv * (X_r - K * l),
        # 0 = K.T * X = -(K.T * A.inv * K) * l + K.T * A.inv * X_r,
        # so (K.T * A.inv * K) * l = K.T * A.inv * X_r
        # is the reduced equation for the Lagrange multipliers.
        # Right-hand side expression: (Forward substitution)
        Rexp = K.T * A.inv * X_r
        self.R = Function(Vtrace)

        # We need to rebuild R everytime data changes
        self._assemble_Rexp = create_assembly_callable(Rexp, tensor=self.R)

        # Schur complement operator:
        Smatexp = K.T * A.inv * K
        with timed_region("Gusto:HybridAssembleTraceOp"):
            S = assemble(Smatexp)
            S.force_evaluation()

        # Set up the Linear solver for the system of Lagrange multipliers
        self.lSolver = LinearSolver(S, solver_parameters=self.solver_parameters,
                                    options_prefix='lambda_solve')

        # Result function for the multiplier solution
        self.lambdar = Function(Vtrace)

        # Place to put result of u rho reconstruction
        self.urho = Function(M)

        # Reconstruction of broken u and rho
        u_, rho_ = self.urho.split()

        # Split operators for two-stage reconstruction
        _A = A.blocks
        _K = K.blocks
        _Xr = X_r.blocks

        A00 = _A[0, 0]
        A01 = _A[0, 1]
        A10 = _A[1, 0]
        A11 = _A[1, 1]
        K0 = _K[0, 0]
        Ru = _Xr[0]
        Rrho = _Xr[1]
        lambda_vec = AssembledVector(self.lambdar)

        # rho reconstruction
        Srho = A11 - A10 * A00.inv * A01
        rho_expr = Srho.solve(Rrho - A10 * A00.inv * (Ru - K0 * lambda_vec),
                              decomposition="PartialPivLU")
        self._assemble_rho = create_assembly_callable(rho_expr, tensor=rho_)

        # "broken" u reconstruction
        rho_vec = AssembledVector(rho_)
        u_expr = A00.solve(Ru - A01 * rho_vec - K0 * lambda_vec,
                           decomposition="PartialPivLU")
        self._assemble_u = create_assembly_callable(u_expr, tensor=u_)

        # Project broken u into the HDiv space using facet averaging.
        # Weight function counting the dofs of the HDiv element:
        shapes = (Vu.finat_element.space_dimension(), np.prod(Vu.shape))

        weight_kernel = """
        for (int i=0; i<%d; ++i) {
        for (int j=0; j<%d; ++j) {
        w[i][j] += 1.0;
        }}""" % shapes

        self._weight = Function(Vu)
        par_loop(weight_kernel, dx, {"w": (self._weight, INC)})

        # Averaging kernel
        self._average_kernel = """
        for (int i=0; i<%d; ++i) {
        for (int j=0; j<%d; ++j) {
        vec_out[i][j] += vec_in[i][j]/w[i][j];
        }}""" % shapes

        # HDiv-conforming velocity
        self.u_hdiv = Function(Vu)

        # Reconstruction of theta
        theta = TrialFunction(Vtheta)
        gamma = TestFunction(Vtheta)

        self.theta = Function(Vtheta)
        theta_eqn = gamma*(theta - theta_in +
                           dot(k, self.u_hdiv)*dot(k, grad(thetabar))*beta)*dx

        theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta)
        self.theta_solver = LinearVariationalSolver(theta_problem,
                                                    solver_parameters={'ksp_type': 'cg',
                                                                       'pc_type': 'bjacobi',
                                                                       'pc_sub_type': 'ilu'},
                                                    options_prefix='thetabacksubstitution')

        self.bcs = [DirichletBC(Vu, 0.0, "bottom"),
                    DirichletBC(Vu, 0.0, "top")]