def action(self, **kwargs): r"""Return the action functional that gives the hybrid model as its Euler-Lagrange equations""" u, h = itemgetter("velocity", "thickness")(kwargs) mesh = u.ufl_domain() ice_front_ids = tuple(kwargs.pop("ice_front_ids", ())) side_wall_ids = tuple(kwargs.pop("side_wall_ids", ())) metadata = {"quadrature_degree": self.quadrature_degree(**kwargs)} dx = firedrake.dx(metadata=metadata) ds_b = firedrake.ds_b(domain=mesh, metadata=metadata) ds_v = firedrake.ds_v(domain=mesh) viscosity = self.viscosity(**kwargs) * dx gravity = self.gravity(**kwargs) * dx friction = self.friction(**kwargs) * ds_b side_friction = self.side_friction(**kwargs) * ds_v(side_wall_ids) if get_mesh_axes(mesh) == "xyz": penalty = self.penalty(**kwargs) * ds_v(side_wall_ids) else: penalty = 0.0 xdegree_u, zdegree_u = u.ufl_element().degree() degree_h = h.ufl_element().degree()[0] degree = (xdegree_u + degree_h, 2 * zdegree_u + 1) ds_t = firedrake.ds_v(ice_front_ids, metadata={"quadrature_degree": degree}) terminus = self.terminus(**kwargs) * ds_t return viscosity + friction + side_friction - gravity - terminus + penalty
def test_advection(): E_initial = firedrake.interpolate(E_surface + q_bed / α * h * (1 - ζ), Q) E = E_initial.copy(deepcopy=True) u0 = 100.0 du = 100.0 u_expr = as_vector((u0 + du * x / Lx, 0)) u = firedrake.interpolate(u_expr, V) w = firedrake.interpolate((-du / Lx + dh / Lx / h * u[0]) * ζ, W) dt = 10.0 final_time = Lx / u0 num_steps = int(final_time / dt) + 1 model = icepack.models.HeatTransport3D() for step in range(num_steps): model._advect(dt, E=E, u=u, w=w, h=h, s=s, E_inflow=E_initial, E_surface=Constant(E_surface)) error_surface = assemble((E - E_surface)**2 * ds_t) assert error_surface / assemble(E_surface**2 * ds_t(mesh)) < 1e-2 error_bed = assemble((E - E_initial)**2 * ds_b) assert error_bed / assemble(E_initial**2 * ds_b(mesh)) < 1e-2
def scale(self, **kwargs): r"""Return the positive, convex part of the action functional The positive part of the action functional is used as a dimensional scale to determine when to terminate an optimization algorithm. """ u = kwargs["velocity"] mesh = u.ufl_domain() metadata = {"quadrature_degree": self.quadrature_degree(**kwargs)} dx = firedrake.dx(metadata=metadata) ds_b = firedrake.ds_b(domain=mesh, metadata=metadata) return self.viscosity(**kwargs) * dx + self.friction(**kwargs) * ds_b
def test_advection(): E_initial = firedrake.interpolate(E_surface + q_bed / α * h * (1 - ζ), Q) E = E_initial.copy(deepcopy=True) # Subclass the heat transport model and turn off diffusion so that we can # test advection by itself class AdvectionTransportModel(icepack.models.HeatTransport3D): def __init__(self): super(AdvectionTransportModel, self).__init__() def diffusive_flux(self, **kwargs): E = kwargs["energy"] h = kwargs["thickness"] Q = E.function_space() ψ = firedrake.TestFunction(Q) return Constant(0) * ψ * h * dx model = AdvectionTransportModel() solver = icepack.solvers.HeatTransportSolver(model) u0 = 100.0 du = 100.0 u_expr = as_vector((u0 + du * x / Lx, 0)) u = firedrake.interpolate(u_expr, V) w = firedrake.interpolate((-du / Lx + dh / Lx / h * u[0]) * ζ, W) dt = 10.0 final_time = Lx / u0 num_steps = int(final_time / dt) + 1 for step in range(num_steps): E = solver.solve( dt, energy=E, velocity=u, vertical_velocity=w, thickness=h, surface=s, heat=Constant(0), heat_bed=Constant(q_bed), energy_inflow=E_initial, energy_surface=Constant(E_surface), ) error_surface = assemble((E - E_surface)**2 * ds_t) assert error_surface / assemble(E_surface**2 * ds_t(mesh)) < 1e-2 error_bed = assemble((E - E_initial)**2 * ds_b) assert error_bed / assemble(E_initial**2 * ds_b(mesh)) < 1e-2
def __init__(self, domain, degree): self.ds_v = ds_v(domain=domain, degree=degree) self.ds_t = ds_t(domain=domain, degree=degree) self.ds_b = ds_b(domain=domain, degree=degree)
def _setup_solver(self): import numpy as np state = self.state dt = state.dt beta_ = dt * self.alpha cp = state.parameters.cp Vu = state.spaces("HDiv") Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element())) Vtheta = state.spaces("theta") Vrho = state.spaces("DG") # Store time-stepping coefficients as UFL Constants beta = Constant(beta_) beta_cp = Constant(beta_ * cp) h_deg = Vrho.ufl_element().degree()[0] v_deg = Vrho.ufl_element().degree()[1] Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg)) # Split up the rhs vector (symbolically) self.xrhs = Function(self.equations.function_space) u_in, rho_in, theta_in = split(self.xrhs)[0:3] # Build the function space for "broken" u, rho, and pressure trace M = MixedFunctionSpace((Vu_broken, Vrho, Vtrace)) w, phi, dl = TestFunctions(M) u, rho, l0 = TrialFunctions(M) n = FacetNormal(state.mesh) # Get background fields thetabar = state.fields("thetabar") rhobar = state.fields("rhobar") exnerbar = thermodynamics.exner_pressure(state.parameters, rhobar, thetabar) exnerbar_rho = thermodynamics.dexner_drho(state.parameters, rhobar, thetabar) exnerbar_theta = thermodynamics.dexner_dtheta(state.parameters, rhobar, thetabar) # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector theta = -dot(k, u) * dot(k, grad(thetabar)) * beta + theta_in # Only include theta' (rather than exner') in the vertical # component of the gradient # The exner prime term (here, bars are for mean and no bars are # for linear perturbations) exner = exnerbar_theta * theta + exnerbar_rho * rho # Vertical projection def V(u): return k * inner(u, k) # hydrostatic projection h_project = lambda u: u - k * inner(u, k) # Specify degree for some terms as estimated degree is too large dxp = dx(degree=(self.quadrature_degree)) dS_vp = dS_v(degree=(self.quadrature_degree)) dS_hp = dS_h(degree=(self.quadrature_degree)) ds_vp = ds_v(degree=(self.quadrature_degree)) ds_tbp = (ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree))) # Add effect of density of water upon theta if self.moisture is not None: water_t = Function(Vtheta).assign(0.0) for water in self.moisture: water_t += self.state.fields(water) theta_w = theta / (1 + water_t) thetabar_w = thetabar / (1 + water_t) else: theta_w = theta thetabar_w = thetabar _l0 = TrialFunction(Vtrace) _dl = TestFunction(Vtrace) a_tr = _dl('+') * _l0('+') * ( dS_vp + dS_hp) + _dl * _l0 * ds_vp + _dl * _l0 * ds_tbp def L_tr(f): return _dl('+') * avg(f) * ( dS_vp + dS_hp) + _dl * f * ds_vp + _dl * f * ds_tbp cg_ilu_parameters = { 'ksp_type': 'cg', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu' } # Project field averages into functions on the trace space rhobar_avg = Function(Vtrace) exnerbar_avg = Function(Vtrace) rho_avg_prb = LinearVariationalProblem(a_tr, L_tr(rhobar), rhobar_avg) exner_avg_prb = LinearVariationalProblem(a_tr, L_tr(exnerbar), exnerbar_avg) rho_avg_solver = LinearVariationalSolver( rho_avg_prb, solver_parameters=cg_ilu_parameters, options_prefix='rhobar_avg_solver') exner_avg_solver = LinearVariationalSolver( exner_avg_prb, solver_parameters=cg_ilu_parameters, options_prefix='exnerbar_avg_solver') with timed_region("Gusto:HybridProjectRhobar"): rho_avg_solver.solve() with timed_region("Gusto:HybridProjectExnerbar"): exner_avg_solver.solve() # "broken" u, rho, and trace system # NOTE: no ds_v integrals since equations are defined on # a periodic (or sphere) base mesh. if any([t.has_label(hydrostatic) for t in self.equations.residual]): u_mass = inner(w, (h_project(u) - u_in)) * dx else: u_mass = inner(w, (u - u_in)) * dx eqn = ( # momentum equation u_mass - beta_cp * div(theta_w * V(w)) * exnerbar * dxp # following does nothing but is preserved in the comments # to remind us why (because V(w) is purely vertical). # + beta_cp*jump(theta_w*V(w), n=n)*exnerbar_avg('+')*dS_vp + beta_cp * jump(theta_w * V(w), n=n) * exnerbar_avg('+') * dS_hp + beta_cp * dot(theta_w * V(w), n) * exnerbar_avg * ds_tbp - beta_cp * div(thetabar_w * w) * exner * dxp # trace terms appearing after integrating momentum equation + beta_cp * jump(thetabar_w * w, n=n) * l0('+') * (dS_vp + dS_hp) + beta_cp * dot(thetabar_w * w, n) * l0 * (ds_tbp + ds_vp) # mass continuity equation + (phi * (rho - rho_in) - beta * inner(grad(phi), u) * rhobar) * dx + beta * jump(phi * u, n=n) * rhobar_avg('+') * (dS_v + dS_h) # term added because u.n=0 is enforced weakly via the traces + beta * phi * dot(u, n) * rhobar_avg * (ds_tb + ds_v) # constraint equation to enforce continuity of the velocity # through the interior facets and weakly impose the no-slip # condition + dl('+') * jump(u, n=n) * (dS_vp + dS_hp) + dl * dot(u, n) * (ds_tbp + ds_vp)) # contribution of the sponge term if hasattr(self.equations, "mu"): eqn += dt * self.equations.mu * inner(w, k) * inner(u, k) * dx aeqn = lhs(eqn) Leqn = rhs(eqn) # Function for the hybridized solutions self.urhol0 = Function(M) hybridized_prb = LinearVariationalProblem(aeqn, Leqn, self.urhol0) hybridized_solver = LinearVariationalSolver( hybridized_prb, solver_parameters=self.solver_parameters, options_prefix='ImplicitSolver') self.hybridized_solver = hybridized_solver # Project broken u into the HDiv space using facet averaging. # Weight function counting the dofs of the HDiv element: shapes = { "i": Vu.finat_element.space_dimension(), "j": np.prod(Vu.shape, dtype=int) } weight_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) w[i*{j} + j] += 1.0; """.format(**shapes) self._weight = Function(Vu) par_loop(weight_kernel, dx, {"w": (self._weight, INC)}) # Averaging kernel self._average_kernel = """ for (int i=0; i<{i}; ++i) for (int j=0; j<{j}; ++j) vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j]; """.format(**shapes) # HDiv-conforming velocity self.u_hdiv = Function(Vu) # Reconstruction of theta theta = TrialFunction(Vtheta) gamma = TestFunction(Vtheta) self.theta = Function(Vtheta) theta_eqn = gamma * (theta - theta_in + dot(k, self.u_hdiv) * dot(k, grad(thetabar)) * beta) * dx theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta) self.theta_solver = LinearVariationalSolver( theta_problem, solver_parameters=cg_ilu_parameters, options_prefix='thetabacksubstitution') # Store boundary conditions for the div-conforming velocity to apply # post-solve self.bcs = self.equations.bcs['u']
def _setup_solver(self): from firedrake.assemble import create_assembly_callable import numpy as np state = self.state dt = state.timestepping.dt beta = dt*state.timestepping.alpha cp = state.parameters.cp mu = state.mu Vu = state.spaces("HDiv") Vu_broken = FunctionSpace(state.mesh, BrokenElement(Vu.ufl_element())) Vtheta = state.spaces("HDiv_v") Vrho = state.spaces("DG") h_deg = state.horizontal_degree v_deg = state.vertical_degree Vtrace = FunctionSpace(state.mesh, "HDiv Trace", degree=(h_deg, v_deg)) # Split up the rhs vector (symbolically) u_in, rho_in, theta_in = split(state.xrhs) # Build the function space for "broken" u and rho # and add the trace variable M = MixedFunctionSpace((Vu_broken, Vrho)) w, phi = TestFunctions(M) u, rho = TrialFunctions(M) l0 = TrialFunction(Vtrace) dl = TestFunction(Vtrace) n = FacetNormal(state.mesh) # Get background fields thetabar = state.fields("thetabar") rhobar = state.fields("rhobar") pibar = thermodynamics.pi(state.parameters, rhobar, thetabar) pibar_rho = thermodynamics.pi_rho(state.parameters, rhobar, thetabar) pibar_theta = thermodynamics.pi_theta(state.parameters, rhobar, thetabar) # Analytical (approximate) elimination of theta k = state.k # Upward pointing unit vector theta = -dot(k, u)*dot(k, grad(thetabar))*beta + theta_in # Only include theta' (rather than pi') in the vertical # component of the gradient # The pi prime term (here, bars are for mean and no bars are # for linear perturbations) pi = pibar_theta*theta + pibar_rho*rho # Vertical projection def V(u): return k*inner(u, k) # Specify degree for some terms as estimated degree is too large dxp = dx(degree=(self.quadrature_degree)) dS_vp = dS_v(degree=(self.quadrature_degree)) dS_hp = dS_h(degree=(self.quadrature_degree)) ds_vp = ds_v(degree=(self.quadrature_degree)) ds_tbp = ds_t(degree=(self.quadrature_degree)) + ds_b(degree=(self.quadrature_degree)) # Mass matrix for the trace space tM = assemble(dl('+')*l0('+')*(dS_v + dS_h) + dl*l0*ds_v + dl*l0*(ds_t + ds_b)) Lrhobar = Function(Vtrace) Lpibar = Function(Vtrace) rhopi_solver = LinearSolver(tM, solver_parameters={'ksp_type': 'cg', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}, options_prefix='rhobarpibar_solver') rhobar_avg = Function(Vtrace) pibar_avg = Function(Vtrace) def _traceRHS(f): return (dl('+')*avg(f)*(dS_v + dS_h) + dl*f*ds_v + dl*f*(ds_t + ds_b)) assemble(_traceRHS(rhobar), tensor=Lrhobar) assemble(_traceRHS(pibar), tensor=Lpibar) # Project averages of coefficients into the trace space with timed_region("Gusto:HybridProjectRhobar"): rhopi_solver.solve(rhobar_avg, Lrhobar) with timed_region("Gusto:HybridProjectPibar"): rhopi_solver.solve(pibar_avg, Lpibar) # Add effect of density of water upon theta if self.moisture is not None: water_t = Function(Vtheta).assign(0.0) for water in self.moisture: water_t += self.state.fields(water) theta_w = theta / (1 + water_t) thetabar_w = thetabar / (1 + water_t) else: theta_w = theta thetabar_w = thetabar # "broken" u and rho system Aeqn = (inner(w, (state.h_project(u) - u_in))*dx - beta*cp*div(theta_w*V(w))*pibar*dxp # following does nothing but is preserved in the comments # to remind us why (because V(w) is purely vertical). # + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_vp + beta*cp*dot(theta_w*V(w), n)*pibar_avg('+')*dS_hp + beta*cp*dot(theta_w*V(w), n)*pibar_avg*ds_tbp - beta*cp*div(thetabar_w*w)*pi*dxp + (phi*(rho - rho_in) - beta*inner(grad(phi), u)*rhobar)*dx + beta*dot(phi*u, n)*rhobar_avg('+')*(dS_v + dS_h)) if mu is not None: Aeqn += dt*mu*inner(w, k)*inner(u, k)*dx # Form the mixed operators using Slate # (A K)(X) = (X_r) # (K.T 0)(l) (0 ) # where X = ("broken" u, rho) A = Tensor(lhs(Aeqn)) X_r = Tensor(rhs(Aeqn)) # Off-diagonal block matrices containing the contributions # of the Lagrange multipliers (surface terms in the momentum equation) K = Tensor(beta*cp*dot(thetabar_w*w, n)*l0('+')*(dS_vp + dS_hp) + beta*cp*dot(thetabar_w*w, n)*l0*ds_vp + beta*cp*dot(thetabar_w*w, n)*l0*ds_tbp) # X = A.inv * (X_r - K * l), # 0 = K.T * X = -(K.T * A.inv * K) * l + K.T * A.inv * X_r, # so (K.T * A.inv * K) * l = K.T * A.inv * X_r # is the reduced equation for the Lagrange multipliers. # Right-hand side expression: (Forward substitution) Rexp = K.T * A.inv * X_r self.R = Function(Vtrace) # We need to rebuild R everytime data changes self._assemble_Rexp = create_assembly_callable(Rexp, tensor=self.R) # Schur complement operator: Smatexp = K.T * A.inv * K with timed_region("Gusto:HybridAssembleTraceOp"): S = assemble(Smatexp) S.force_evaluation() # Set up the Linear solver for the system of Lagrange multipliers self.lSolver = LinearSolver(S, solver_parameters=self.solver_parameters, options_prefix='lambda_solve') # Result function for the multiplier solution self.lambdar = Function(Vtrace) # Place to put result of u rho reconstruction self.urho = Function(M) # Reconstruction of broken u and rho u_, rho_ = self.urho.split() # Split operators for two-stage reconstruction _A = A.blocks _K = K.blocks _Xr = X_r.blocks A00 = _A[0, 0] A01 = _A[0, 1] A10 = _A[1, 0] A11 = _A[1, 1] K0 = _K[0, 0] Ru = _Xr[0] Rrho = _Xr[1] lambda_vec = AssembledVector(self.lambdar) # rho reconstruction Srho = A11 - A10 * A00.inv * A01 rho_expr = Srho.solve(Rrho - A10 * A00.inv * (Ru - K0 * lambda_vec), decomposition="PartialPivLU") self._assemble_rho = create_assembly_callable(rho_expr, tensor=rho_) # "broken" u reconstruction rho_vec = AssembledVector(rho_) u_expr = A00.solve(Ru - A01 * rho_vec - K0 * lambda_vec, decomposition="PartialPivLU") self._assemble_u = create_assembly_callable(u_expr, tensor=u_) # Project broken u into the HDiv space using facet averaging. # Weight function counting the dofs of the HDiv element: shapes = (Vu.finat_element.space_dimension(), np.prod(Vu.shape)) weight_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { w[i][j] += 1.0; }}""" % shapes self._weight = Function(Vu) par_loop(weight_kernel, dx, {"w": (self._weight, INC)}) # Averaging kernel self._average_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { vec_out[i][j] += vec_in[i][j]/w[i][j]; }}""" % shapes # HDiv-conforming velocity self.u_hdiv = Function(Vu) # Reconstruction of theta theta = TrialFunction(Vtheta) gamma = TestFunction(Vtheta) self.theta = Function(Vtheta) theta_eqn = gamma*(theta - theta_in + dot(k, self.u_hdiv)*dot(k, grad(thetabar))*beta)*dx theta_problem = LinearVariationalProblem(lhs(theta_eqn), rhs(theta_eqn), self.theta) self.theta_solver = LinearVariationalSolver(theta_problem, solver_parameters={'ksp_type': 'cg', 'pc_type': 'bjacobi', 'pc_sub_type': 'ilu'}, options_prefix='thetabacksubstitution') self.bcs = [DirichletBC(Vu, 0.0, "bottom"), DirichletBC(Vu, 0.0, "top")]