Esempio n. 1
0
def EulerSys_b(b, *objs):
    '''
    Generates vector of all Euler errors for a given b, which errors
    characterize all optimal lifetime savings decisions

    Inputs:
        b     = [S-1,] vector, lifetime savings decisions
        objs     = length 9 tuple,
                   (alpha, beta, sigma, r, w, p, p, c_bar, n)
        alpha    = [I,] vector, expenditure shares on each good
        beta     = scalar in [0,1), discount factor for each model
                   period
        sigma    = scalar > 0, coefficient of relative risk aversion
        r        = scalar > 0, interest rate
        w        = scalar > 0, real wage
        p_tilde        = scalar > 0, composite good price
        p_c    = [I,] vector, price for each consumption good
        c_bar = [I,] vector, minimum consumption values for all goods
        n     = [S,] vector, exogenous labor supply n_{s}

    Functions called:
        firm.get_c_tilde
        firm.get_c
        firm.get_b_errors

    Objects in function:
        c_params     = length 3 tuple, parameters for get_c (r, w, p)
        c_tilde         = [S,] vector, remaining lifetime consumption
                       levels implied by b
        c_tilde_cstr       = [S, ] boolean vector, =True if c_{s,t}<=0
        c_params    = length 2 tuple, parameters for get_c
                       (alpha, p)
        c        = [I,S] matrix, consumption values for each good
                       and age c_{i,s}
        c_cstr      = [I,S] boolean matrix, =True if c_{i,s}<=0
        b_err_params = length 2 tuple, parameters to pass into
                       get_b_errors (beta, sigma)
        b_err_vec    = [S-1,] vector, Euler errors from lifetime
                       consumption vector

    Returns: b_err_vec
    '''
    alpha, beta, sigma, r, w, p_tilde, p_c, c_bar, I, S, n = objs

    c_tilde, c_tilde_cstr = firm.get_c_tilde(c_bar, r, w, p_c, p_tilde, n,
                                             np.append([0], b))
    c, c_cstr = firm.get_c(np.tile(np.reshape(alpha, (I, 1)), (1, S)),
                           np.tile(np.reshape(c_bar, (I, 1)), (1, S)),
                           np.tile(c_tilde, (I, 1)),
                           np.tile(np.reshape(p_c, (I, 1)), (1, S)), p_tilde)
    b_err_params = (beta, sigma)
    b_err_vec = firm.get_b_errors(b_err_params,
                                  r,
                                  c_tilde,
                                  c_tilde_cstr,
                                  diff=True)
    return b_err_vec
Esempio n. 2
0
def get_cbess(params, b_guess, p_c, c_bar, I, S, n):
    '''
    Generates vectors for individual savings, composite consumption,
    industry-specific consumption, constraint vectors, and Euler errors
    for a given set of prices (r, w, p, p).

    Inputs:
        params   = length 7 tuple, (alpha, beta, sigma, r, w, p ss_tol)
        alpha    = [I,] vector, expenditure shares on each good
        beta     = scalar in [0,1), discount factor for each model
                   period
        sigma    = scalar > 0, coefficient of relative risk aversion
        r        = scalar > 0, interest rate
        w        = scalar > 0, real wage
        p_tilde        = scalar > 0, composite good price
        ss_tol   = scalar > 0, tolerance level for steady-state fsolve
        b_guess  = [S-1,] vector, initial guess for savings vector
        p_c    = [I,] vector, prices in each industry
        c_bar = [I,] vector, minimum consumption values for all goods
        n     = [S,] vector, exogenous labor supply n_{s}

    Functions called:
        EulerSys_b
        firm.get_c_tilde
        firm.get_c
        firm.get_b_errors

    Objects in function:
        eulb_objs  = length 9 tuple, objects to be passed in to
                     EulerSys_b: (alpha, beta, sigma, r, w, p, p,
                     c_bar, n)
        b       = [S-1,] vector, optimal lifetime savings decisions
        c_tidle_params   = length 3 tuple, parameters for get_c_tilde(r, w, p_tilde)
        c_tilde       = [S,] vector, optimal lifetime consumption
        c_tilde_cstr     = [S,] boolean vector, =True if c_s<=0
        c_params  = length 2 tuple, parameters for get_c (alpha, p)
        c        = [I,S] matrix,  optimal consumption of each good
                     given prices
        c_cstr    = [I,S] boolean matrix, =True if c_{i,s}<=0 for given
                     c_s
        eul_params = length 2 tuple, parameters for get_b_errors
                     (beta, sigma)
        euler_errors     = [S-1,] vector, Euler errors from savings decisions

    Returns: b, c, c_cstr, c, c_cstr, euler_errors
    '''
    alpha, beta, sigma, r, w, p_tilde, ss_tol = params
    eulb_objs = (alpha, beta, sigma, r, w, p_tilde, p_c, c_bar, I, S, n)
    b = opt.fsolve(EulerSys_b, b_guess, args=(eulb_objs), xtol=ss_tol)
    c_tilde, c_tilde_cstr = firm.get_c_tilde(c_bar, r, w, p_c, p_tilde, n, np.append([0], b))
    c_params = (alpha, p_tilde)
    c, c_cstr = firm.get_c(np.tile(np.reshape(alpha,(I,1)),(1,S)), np.tile(np.reshape(c_bar,(I,1)),(1,S)), 
                           np.tile(c_tilde,(I,1)), np.tile(np.reshape(p_c,(I,1)),(1,S)) , p_tilde)
    eul_params = (beta, sigma)
    euler_errors = firm.get_b_errors(eul_params, r, c_tilde, c_tilde_cstr, diff=True)

    return b, c, c_cstr, c, c_cstr, euler_errors
Esempio n. 3
0
def EulerSys_b(b, *objs):
    '''
    Generates vector of all Euler errors for a given b, which errors
    characterize all optimal lifetime savings decisions

    Inputs:
        b     = [S-1,] vector, lifetime savings decisions
        objs     = length 9 tuple,
                   (alpha, beta, sigma, r, w, p, p, c_bar, n)
        alpha    = [I,] vector, expenditure shares on each good
        beta     = scalar in [0,1), discount factor for each model
                   period
        sigma    = scalar > 0, coefficient of relative risk aversion
        r        = scalar > 0, interest rate
        w        = scalar > 0, real wage
        p_tilde        = scalar > 0, composite good price
        p_c    = [I,] vector, price for each consumption good
        c_bar = [I,] vector, minimum consumption values for all goods
        n     = [S,] vector, exogenous labor supply n_{s}

    Functions called:
        firm.get_c_tilde
        firm.get_c
        firm.get_b_errors

    Objects in function:
        c_params     = length 3 tuple, parameters for get_c (r, w, p)
        c_tilde         = [S,] vector, remaining lifetime consumption
                       levels implied by b
        c_tilde_cstr       = [S, ] boolean vector, =True if c_{s,t}<=0
        c_params    = length 2 tuple, parameters for get_c
                       (alpha, p)
        c        = [I,S] matrix, consumption values for each good
                       and age c_{i,s}
        c_cstr      = [I,S] boolean matrix, =True if c_{i,s}<=0
        b_err_params = length 2 tuple, parameters to pass into
                       get_b_errors (beta, sigma)
        b_err_vec    = [S-1,] vector, Euler errors from lifetime
                       consumption vector

    Returns: b_err_vec
    '''
    alpha, beta, sigma, r, w, p_tilde, p_c, c_bar, I, S, n = objs

    c_tilde, c_tilde_cstr = firm.get_c_tilde(c_bar, r, w, p_c, p_tilde, n, np.append([0], b))
    c, c_cstr = firm.get_c(np.tile(np.reshape(alpha,(I,1)),(1,S)), np.tile(np.reshape(c_bar,(I,1)),(1,S)), 
                           np.tile(c_tilde,(I,1)), np.tile(np.reshape(p_c,(I,1)),(1,S)) , p_tilde)
    b_err_params = (beta, sigma)
    b_err_vec = firm.get_b_errors(b_err_params, r, c_tilde, c_tilde_cstr, diff=True)
    return b_err_vec
Esempio n. 4
0
def paths_life(params, beg_age, beg_wealth, c_bar, n, r_path,
               w_path, p_c_path, p_tilde_path, b_init):
    '''
    Solve for the remaining lifetime savings decisions of an individual
    who enters the model at age beg_age, with corresponding initial
    wealth beg_wealth.

    Inputs:
        params     = length 5 tuple, (S, alpha, beta, sigma, tp_tol)
        S          = integer in [3,80], number of periods an individual
                     lives
        alpha      = [I,S-beg_age+1], expenditure share on good for remaing lifetime
        beta       = scalar in [0,1), discount factor for each model
                     period
        sigma      = scalar > 0, coefficient of relative risk aversion
        tp_tol    = scalar > 0, tolerance level for fsolve's in TPI
        beg_age    = integer in [1,S-1], beginning age of remaining life
        beg_wealth = scalar, beginning wealth at beginning age
        n       = [S-beg_age+1,] vector, remaining exogenous labor
                     supplies
        r_path      = [S-beg_age+1,] vector, remaining lifetime interest
                     rates
        w_path      = [S-beg_age+1,] vector, remaining lifetime wages
        p_c_path     = [I, S-beg_age+1] matrix, remaining lifetime
                     consumption good prices
        p_tilde_path      = [S-beg_age+1,] vector, remaining lifetime composite
                     goods prices
        b_init     = [S-beg_age,] vector, initial guess for remaining
                     lifetime savings

    Functions called:
        LfEulerSys
        firm.get_c_tilde
        firm.get_c
        firm.get_b_errors

    Objects in function:
        u            = integer in [2,S], remaining periods in life
        b_guess      = [u-1,] vector, initial guess for lifetime savings
                       decisions
        eullf_objs   = length 9 tuple, objects to be passed in to
                       LfEulerSys: (p, beta, sigma, beg_wealth, n,
                       r_path, w_path, p_path, p_tilde_path)
        b_path        = [u-1,] vector, optimal remaining lifetime savings
                       decisions
        c_tilde_path        = [u,] vector, optimal remaining lifetime
                       consumption decisions
        c_path       = [u,I] martrix, remaining lifetime consumption
                        decisions by consumption good
        c_constr     = [u,] boolean vector, =True if c_{u}<=0,
        b_err_params = length 2 tuple, parameters to pass into
                       firm.get_b_errors (beta, sigma)
        b_err_vec    = [u-1,] vector, Euler errors associated with
                       optimal savings decisions

    Returns: b_path, c_tilde_path, c_path, b_err_vec
    '''
    S, alpha, beta, sigma, tp_tol = params
    u = int(S - beg_age + 1)
    if beg_age == 1 and beg_wealth != 0:
        sys.exit("Beginning wealth is nonzero for age s=1.")
    if len(r_path) != u:
        #print len(r_path), S-beg_age+1
        sys.exit("Beginning age and length of r_path do not match.")
    if len(w_path) != u:
        sys.exit("Beginning age and length of w_path do not match.")
    if len(n) != u:
        sys.exit("Beginning age and length of n do not match.")
    b_guess = 1.01 * b_init
    eullf_objs = (u, beta, sigma, beg_wealth, c_bar, n, r_path,
                  w_path, p_c_path, p_tilde_path)
    b_path = opt.fsolve(LfEulerSys, b_guess, args=(eullf_objs),
                       xtol=tp_tol)
    c_tilde_path, c_tilde_cstr = firm.get_c_tilde(c_bar, r_path, w_path, p_c_path, p_tilde_path,
                    n, np.append(beg_wealth, b_path))
    c_path, c_cstr = firm.get_c(alpha[:,:u], c_bar, c_tilde_path, p_c_path, p_tilde_path)
    b_err_params = (beta, sigma)
    b_err_vec = firm.get_b_errors(b_err_params, r_path[1:], c_tilde_path,
                                   c_tilde_cstr, diff=True)
    return b_path, c_tilde_path, c_path, b_err_vec
Esempio n. 5
0
def get_cbepath(params, Gamma1, r_path, w_path, p_c_path, p_tilde_path,
  c_bar, I, n):
    '''
    Generates matrices for the time path of the distribution of
    individual savings, individual composite consumption, individual
    consumption of each type of good, and the Euler errors associated
    with the savings decisions.

    Inputs:
        params     = length 6 tuple, (S, T, alpha, beta, sigma, tp_tol)
        S          = integer in [3,80], number of periods an individual
                     lives
        T          = integer > S, number of time periods until steady
                     state
        I          = integer, number unique consumption goods
        alpha      = [I,T+S-1] matrix, expenditure shares on each good along time path
        beta       = scalar in [0,1), discount factor for each model
                     period
        sigma      = scalar > 0, coefficient of relative risk aversion
        tp_tol    = scalar > 0, tolerance level for fsolve's in TPI
        Gamma1     = [S-1,] vector, initial period savings distribution
        r_path = [T+S-1,] vector, the time path of
                     the interest rate
        w_path = [T+S-1,] vector, the time path of
                     the wage
        p_c_path     = [I, T+S-1] matrix, time path of consumption goods prices
        p_tilde_path      = [T+S-1] vector, time path of composite price
        c_bar   = [I,T+S-1] matrix, minimum consumption values for all
                     goods along time path
        n          = [S,] vector, exogenous labor supply n_{s}

    Functions called:
        paths_life

    Objects in function:
        b_path      = [S-1, T+S-1] matrix, distribution of savings along time path
        c_tilde_path      = [S, T+S-1] matrix, distribution of composite consumption along time path
        c_path     = [S, T+S-1, I] array, distribution of consumption of each cons good along time path
        eulerr_path = [S-1, T+S-1] matrix, Euler equation errors along the time path
        pl_params  = length 4 tuple, parameters to pass into paths_life
                     (S, beta, sigma, TP_tol)
        u          = integer >= 2, represents number of periods
                     remaining in a lifetime, used to solve incomplete
                     lifetimes
        b_guess    = [u-1,] vector, initial guess for remaining lifetime
                     savings, taken from previous cohort's choices
        b_lf     = [u-1,] vector, optimal remaining lifetime savings
                     decisions
        c_tilde_lf     = [u,] vector, optimal remaining lifetime composite consumption
                     decisions
        c_lf    = [u,I] matrix, optimal remaining lifetime invididual consumption decisions 
        b_err_vec_lf = [u-1,] vector, Euler errors associated with
                      optimal remaining lifetime savings decisions
        DiagMaskb   = [u-1, u-1] boolean identity matrix
        DiagMaskc   = [u, u] boolean identity matrix

    Returns: b_path, c_tilde_path, c_path, eulerr_path
    '''
    S, T, alpha, beta, sigma, tp_tol = params
    b_path = np.append(Gamma1.reshape((S-1,1)), np.zeros((S-1, T+S-2)),
            axis=1)
    c_tilde_path = np.zeros((S, T+S-1))
    c_path = np.zeros((S, T+S-1, I))
    eulerr_path = np.zeros((S-1, T+S-1))
    # Solve the incomplete remaining lifetime decisions of agents alive
    # in period t=1 but not born in period t=1
    c_tilde_path[S-1, 0], c_tilde_cstr = firm.get_c_tilde(c_bar[:,0],r_path[0],w_path[0],
                                p_c_path[:,0], p_tilde_path[0],n[S-1],Gamma1[S-2])
    c_path[S-1, 0, :], c_cstr = firm.get_c(alpha[:,0],c_bar[:,0],c_tilde_path[S-1,0],
                                     p_c_path[:,0],p_tilde_path[0])
    for u in xrange(2, S):
        # b_guess = b_ss[-u+1:]
        b_guess = np.diagonal(b_path[S-u:, :u-1])
        pl_params = (S, alpha[:,:u], beta, sigma, tp_tol)
        b_lf, c_tilde_lf, c_lf, b_err_vec_lf = paths_life(pl_params,
            S-u+1, Gamma1[S-u-1], c_bar[:,:u], n[-u:], r_path[:u],
            w_path[:u], p_c_path[:, :u], p_tilde_path[:u], b_guess)
        # Insert the vector lifetime solutions diagonally (twist donut)
        # into the c_tilde_path, b_path, and EulErrPath matrices
        DiagMaskb = np.eye(u-1, dtype=bool)
        DiagMaskc = np.eye(u, dtype=bool)
        b_path[S-u:, 1:u] = DiagMaskb * b_lf + b_path[S-u:, 1:u]
        c_tilde_path[S-u:, :u] = DiagMaskc * c_tilde_lf + c_tilde_path[S-u:, :u]
        DiagMaskc_tiled = np.tile(np.expand_dims(np.eye(u, dtype=bool),axis=2),(1,1,I))
        c_lf = np.tile(np.expand_dims(c_lf.transpose(),axis=0),((c_lf.shape)[1],1,1))
        c_path[S-u:, :u, :] = (DiagMaskc_tiled * c_lf +
                              c_path[S-u:, :u, :])
        eulerr_path[S-u:, 1:u] = (DiagMaskb * b_err_vec_lf +
                                eulerr_path[S-u:, 1:u])
    # Solve for complete lifetime decisions of agents born in periods
    # 1 to T and insert the vector lifetime solutions diagonally (twist
    # donut) into the c_tilde_path, b_path, and EulErrPath matrices
    
    DiagMaskb = np.eye(S-1, dtype=bool)
    DiagMaskc = np.eye(S, dtype=bool)
    DiagMaskc_tiled = np.tile(np.expand_dims(np.eye(S, dtype=bool),axis=2),(1,1,I))

    for t in xrange(1, T+1): # Go from periods 1 to T
        # b_guess = b_ss
        b_guess = np.diagonal(b_path[:, t-1:t+S-2])
        pl_params = (S, alpha[:,t-1:t+S-1], beta, sigma, tp_tol)
        b_lf, c_lf, c_i_lf, b_err_vec_lf = paths_life(pl_params, 1,
            0, c_bar[:,t-1:t+S-1], n, r_path[t-1:t+S-1],
            w_path[t-1:t+S-1], p_c_path[:, t-1:t+S-1],
            p_tilde_path[t-1:t+S-1], b_guess)
        c_i_lf = np.tile(np.expand_dims(c_i_lf.transpose(),axis=0),((c_i_lf.shape)[1],1,1))
        # Insert the vector lifetime solutions diagonally (twist donut)
        # into the c_tilde_path, b_path, and EulErrPath matrices
        b_path[:, t:t+S-1] = DiagMaskb * b_lf + b_path[:, t:t+S-1]
        c_tilde_path[:, t-1:t+S-1] = DiagMaskc * c_lf + c_tilde_path[:, t-1:t+S-1]
        c_path[:, t-1:t+S-1, :] = (DiagMaskc_tiled * c_i_lf +
                                  c_path[:, t-1:t+S-1, :])
        eulerr_path[:, t:t+S-1] = (DiagMaskb * b_err_vec_lf +
                                 eulerr_path[:, t:t+S-1])
    return b_path, c_tilde_path, c_path, eulerr_path
Esempio n. 6
0
def get_cbess(params, b_guess, p_c, c_bar, I, S, n):
    '''
    Generates vectors for individual savings, composite consumption,
    industry-specific consumption, constraint vectors, and Euler errors
    for a given set of prices (r, w, p, p).

    Inputs:
        params   = length 7 tuple, (alpha, beta, sigma, r, w, p ss_tol)
        alpha    = [I,] vector, expenditure shares on each good
        beta     = scalar in [0,1), discount factor for each model
                   period
        sigma    = scalar > 0, coefficient of relative risk aversion
        r        = scalar > 0, interest rate
        w        = scalar > 0, real wage
        p_tilde        = scalar > 0, composite good price
        ss_tol   = scalar > 0, tolerance level for steady-state fsolve
        b_guess  = [S-1,] vector, initial guess for savings vector
        p_c    = [I,] vector, prices in each industry
        c_bar = [I,] vector, minimum consumption values for all goods
        n     = [S,] vector, exogenous labor supply n_{s}

    Functions called:
        EulerSys_b
        firm.get_c_tilde
        firm.get_c
        firm.get_b_errors

    Objects in function:
        eulb_objs  = length 9 tuple, objects to be passed in to
                     EulerSys_b: (alpha, beta, sigma, r, w, p, p,
                     c_bar, n)
        b       = [S-1,] vector, optimal lifetime savings decisions
        c_tidle_params   = length 3 tuple, parameters for get_c_tilde(r, w, p_tilde)
        c_tilde       = [S,] vector, optimal lifetime consumption
        c_tilde_cstr     = [S,] boolean vector, =True if c_s<=0
        c_params  = length 2 tuple, parameters for get_c (alpha, p)
        c        = [I,S] matrix,  optimal consumption of each good
                     given prices
        c_cstr    = [I,S] boolean matrix, =True if c_{i,s}<=0 for given
                     c_s
        eul_params = length 2 tuple, parameters for get_b_errors
                     (beta, sigma)
        euler_errors     = [S-1,] vector, Euler errors from savings decisions

    Returns: b, c, c_cstr, c, c_cstr, euler_errors
    '''
    alpha, beta, sigma, r, w, p_tilde, ss_tol = params
    eulb_objs = (alpha, beta, sigma, r, w, p_tilde, p_c, c_bar, I, S, n)
    b = opt.fsolve(EulerSys_b, b_guess, args=(eulb_objs), xtol=ss_tol)
    c_tilde, c_tilde_cstr = firm.get_c_tilde(c_bar, r, w, p_c, p_tilde, n,
                                             np.append([0], b))
    c_params = (alpha, p_tilde)
    c, c_cstr = firm.get_c(np.tile(np.reshape(alpha, (I, 1)), (1, S)),
                           np.tile(np.reshape(c_bar, (I, 1)), (1, S)),
                           np.tile(c_tilde, (I, 1)),
                           np.tile(np.reshape(p_c, (I, 1)), (1, S)), p_tilde)
    eul_params = (beta, sigma)
    euler_errors = firm.get_b_errors(eul_params,
                                     r,
                                     c_tilde,
                                     c_tilde_cstr,
                                     diff=True)

    return b, c, c_cstr, c, c_cstr, euler_errors