Esempio n. 1
0
    def findoffBB(self, t, plane, MADTwiss, betalist):

        print "METHOD => Starting to calculate off-momentum beta-beat"

        self.bpms = intersect(t)
        self.bpms = modelIntersect(self.bpms, MADTwiss)
        MADTwiss.chrombeat()

        self.slope = {}
        self.slopeE = {}
        self.slopeM = {}

        dpplist = []

        for i in range(len(betalist)):  #### for sorting

            dpplist.append(betalist[i]['DPP'])

        dpplist.sort()

        #if dpplist[0]>dpplist[1]
        #dpplist.reverse()

        for i in range(len(self.bpms)):

            bn = upper(self.bpms[i][1])
            check = 0
            slopei = 0.0
            slopeiM = 0.0
            beta = []
            k = 0

            for k in range(len(dpplist)):
                count = 0
                for j in range(len(betalist)):

                    if dpplist[k] == betalist[j]['DPP']:

                        if count == 0:

                            beta.append(betalist[j][bn][0])
                        count = 1

            [slope, offset, R, slope_error,
             offset_error] = linreg.linreg(dpplist, beta)

            a = FIT(dpplist, beta, 1, 1e-15)
            #print ' list '+str(dpplist)
            coef, error = a.linreg()

            if plane == 'H':
                slopeiM = MADTwiss.dbx[MADTwiss.indx[upper(bn)]]
            else:
                slopeiM = MADTwiss.dby[MADTwiss.indx[upper(bn)]]

            #self.slope[bn]=coef[0]
            self.slope[bn] = coef[0] / 100
            #self.slopeE[bn]=error[0]
            self.slopeE[bn] = error[0] / 100
            self.slopeM[bn] = slopeiM
Esempio n. 2
0
 def startUp(self):
     #generate dummy data to plot at start-up
     X = np.arange(800, 2000, 2)
     Y1 = FIT.lorents(X, 1800, 1358, 110)
     Y2 = FIT.lorents(X, 1700, 1590, 50)
     self.subplot.plot(X, (Y1+Y2)+20*np.random.randn(len(X)), 'o')
     self.subplot.plot(X, Y1+Y2, 'r--', label = 'Sample data')
     self.subplot.legend()
     self.subplot.plot(X, Y1)
     self.subplot.plot(X, Y2)
     self.subplot.set_xlim(np.min(X), np.max(X))
     self.plotAdjust()
Esempio n. 3
0
 def previewAll(self):
     if not np.shape(self.data.X):
         self.errorBox('There is no data', 'No data...')
         return
     self.subplot.clear()
     self.subplot.plot(self.data.X, self.data.current, label = 'Experimental data')
     cols = self.tableWidget.columnCount()
     rows = self.tableWidget.rowCount()
     cumulative = np.zeros(len(self.data.X))
     intensity = [float(self.tableWidget.item(row, 5).text()) for row in range(rows) if self.tableWidget.item(row, 0).checkState()&Qt.Checked]
     norm = max(self.data.current)/max(intensity)
     for row in range(rows):
         if self.tableWidget.item(row, 0).checkState() & Qt.Checked:
             error = [self.itemCheck(self.tableWidget.item(row, col), silent=True) for col in range(1, cols-1)]
             if True in error:
                 self.errorBox("Bad parameters", "Bad values")
                 return
             params =[float(self.tableWidget.item(row, col).text()) for col in [5, 6, 2]]
             params[0] *= norm
             label = self.tableWidget.item(row, 1).text()
             shape = self.tableWidget.cellWidget(row, 7).currentText().strip()[0]
             if shape == 'V':
                 params = np.append(params, 0.5)
             elif shape == 'B':
                 params = np.append(params, 0.02)
             p = FIT.Peak(FIT, self.data.X, *params, shape = shape)
             cumulative += p
             self.subplot.plot(self.data.X, p, label = label)
     self.subplot.plot(self.data.X, cumulative, 'r--', label = "Cumulative")
     self.plotAdjust()
Esempio n. 4
0
 def previewBand(self, row):
     if not np.shape(self.data.X):
         self.errorBox('There is no data', 'No data...')
         return
     cols = self.tableWidget.columnCount()
     params =[self.tableWidget.item(row, col).text() for col in range(1, cols-1)]
     shape = self.tableWidget.cellWidget(row, cols-1).currentText().strip()[0]
     label = params[0]
     params = np.asarray([params[4], params[5], params[1]]).astype(float)
     if shape == 'V':
         params = np.append(params, 0.5)
     elif shape == 'B':
         params = np.append(params, 0.02)
     self.Plot(self.data.X, self.data.current, "Experimental data")
     self.subplot.plot(self.data.X, FIT.Peak(FIT, self.data.X, *params, shape = shape), label = label)
     self.subplot.legend()
     self.canvas.draw()
def bound(nr, parameters):
        names = parameters['labels'][:nr]
        shape = parameters['shape'][:nr]
        fit = FIT(shape, names)
        #load the initial guess
        parguess =np.concatenate( [[parameters['intens'][i], parameters['width'][i],
                        parameters['freq'][i], parameters['voigt'][i]] if shape[i]=='V' else
                        [parameters['intens'][i], parameters['width'][i], parameters['freq'][i]]
                        for i in np.arange(0, len(names))])
        #lower bound
        lower = np.concatenate( [[parameters['intens_min'][i], parameters['width_min'][i],
                        parameters['freq_min'][i], parameters['voigt_min'][i]] if shape[i]=='V' else
                        [parameters['intens_min'][i], parameters['width_min'][i], parameters['freq_min'][i]]
                        for i in np.arange(0, len(names))])
        #higher bound
        upper = np.concatenate( [[parameters['intens_max'][i], parameters['width_max'][i],
                        parameters['freq_max'][i], parameters['voigt_max'][i]] if shape[i]=='V' else
                        [parameters['intens_max'][i], parameters['width_max'][i], parameters['freq_max'][i]]
                        for i in np.arange(0, len(names))])
        return fit, parguess, [lower, upper]
Esempio n. 6
0
 def prepDataForDeconv(self, **kwargs):
     #prepare the data for deconvolution
     #the function first checks if the data is present and that the baseline was removed
     #fitting parameters are then taken from the table and put in a list
     batch = kwargs.get('batch', False)
     if not np.shape(self.data.X) and not batch:
         self.errorBox('There is no data', 'No data...')
         return -1, -1, -1
     if not np.shape(self.data.baseline) and not batch:
         result = QMessageBox.question(self,
                 "Baseline...",
                 "The baseline is still present!\nWould you like to remove it first?",
                 QMessageBox.Yes| QMessageBox.No)
         if result == QMessageBox.Yes:
             res = self.Baseline()
             if res == -1:
                 return -1, -1, -1
         else:
             return -1, -1, -1
     rows = self.tableWidget.rowCount()
     cols = self.tableWidget.columnCount()
     params = pd.DataFrame(columns = ['lb', 'pos', 'pos_min', 'pos_max',  'int', 'width', 'shape'])
     for row in range(rows):
         if self.tableWidget.item(row, 0).checkState() & Qt.Checked:
             error = [self.itemCheck(self.tableWidget.item(row, col), silent=True) for col in range(1, cols-1)]
             if True in error:
                 self.errorBox("Bad parameters", "Bad values")
                 self.dockGuess.raise_()
                 return -1, -1, -1
             d =[self.tableWidget.item(row, col).text() for col in range(1, cols-1)]
             p_shape = self.tableWidget.cellWidget(row, cols-1).currentText().strip()[0]
             params = params.append({'lb': d[0],  'pos' : d[1], 'pos_min' : d[2],
                 'pos_max' : d[3], 'int' : d[4], 'width' : d[5], 'shape' : p_shape}, ignore_index =True)
     self.fit = FIT(params['shape'], params['lb'])
     parguess = np.concatenate([[params['int'][i], params['width'][i], params['pos'][i]]
                 for i in range(len(params['lb'])) ]).astype(float)
     lower = np.concatenate([[5, 5, params['pos_min'][i]] for i in range(len(params['lb'])) ]).astype(float)
     upper = np.concatenate([[float('inf'), float('inf'), params['pos_max'][i]] for i in range(len(params['lb'])) ]).astype(float)
     return parguess, lower, upper
Esempio n. 7
0
def BatchWorker(*params):
    f, names, shape, bsParams, crop, peakLimits, parguess, bounds, index, folder = params
    dt = DATA()
    result = pd.Series(name = os.path.basename(f), index = index, dtype = object)
    try:
        dt.loadData(f)
        dt.crop(crop.min, crop.max)
        dt.fitBaseline(bsParams, peakLimits, abs = True)

        text = ''
        for deg in np.arange(0, dt.bsDegree+1):
            if dt.bsCoef[deg]>=0 and deg!=0:
                text += '+'
            text += '{:.4E}*x^{}'.format(dt.bsCoef[deg], dt.bsDegree-deg)
        result.loc['baseline'] = text
    except Exception as e:
        print("Error {}".format(e))
    try:
        fit = FIT(shape, names)
        fit.deconvolute(dt, parguess, bounds, batch=True)
        for i, pars in enumerate(zip(names, shape)):
            result.loc[pars[0]+'_'+'Position'] = fit.pars[int(np.sum(fit.args[:i])+2)]
            result.loc[pars[0]+'_'+'Amplitude'] = fit.pars[int(np.sum(fit.args[:i]))]
            result.loc[pars[0]+'_'+'FWHM'] = fit.fwhm[i]
            result.loc[pars[0]+'_'+'Area'] = fit.area[i]
            if pars[1] == 'V':
                result.loc[pars[0]+'_'+'L/G'] = fit.pars[int(np.sum(fit.args[:i])+3)]
            elif pars[1] == 'B':
                result.loc[pars[0]+'_'+'1/q'] = fit.pars[int(np.sum(fit.args[:i])+3)]
        # result.iloc[1::4] = fit.pars[2::3]
        # result.iloc[2::4] = fit.pars[::3]
        # result.iloc[3::4] = fit.fwhm
        # result.iloc[4::4] = fit.area
    except Exception as e:
        print('Could not deconvolute the {} file'.format(f))
        result.iloc[1:len(index)] = -1*np.ones(len(index)-1)
        print(e)
    path = folder+ '/' +os.path.basename(f)+'.png'
    fig = plt.figure(figsize=(12,8))
    fit.plot(figure = fig, path = path)
    return result
Esempio n. 8
0
    def findoffPhase(self, t, plane, MADTwiss, phaselist):

        print "METHOD => Start calculating off-momentum phase"

        # t is collection of twiss files
        dpplist = []
        for i in range(len(phaselist)):  #### for sorting

            dpplist.append(phaselist[i]['DPP'])
        dpplist.sort()

        if len(t) < 2:
            print " Not enough files \n ... I cannot work like this! => sys.exit()"
            sys.exit()

        self.bpms = intersect(t)
        self.bpms = modelIntersect(self.bpms, MADTwiss)

        self.slope = {}
        self.slopeE = {}
        self.slopeM = {}

        print "The lenght of the bpms " + str(len(self.bpms))

        for i in range(len(self.bpms)):
            print i
            if i == len(self.bpms) - 1:
                bn = upper(self.bpms[i][1])
                print bn
                print "hereeeeeee"
                bn2 = upper(self.bpms[0][1])
            else:
                bn = upper(self.bpms[i][1])
                bn2 = upper(self.bpms[i + 1][1])

            phase = []

            if plane == 'H':
                slopeMp = MADTwiss.DMUX[MADTwiss.indx[bn2]] - MADTwiss.DMUX[
                    MADTwiss.indx[bn]]
            else:
                slopeMp = MADTwiss.DMUY[MADTwiss.indx[bn2]] - MADTwiss.DMUY[
                    MADTwiss.indx[bn]]

            for k in range(len(dpplist)):
                count = 0
                for j in range(len(phaselist)):

                    if dpplist[k] == phaselist[j]['DPP']:

                        if count == 0:

                            phase.append(phaselist[j][bn][0])

                        count = 1

            a = FIT(dpplist, phase, 1, 1e-15)
            coef, error = a.linreg()

            self.slope[bn] = coef[0]
            self.slopeE[bn] = error[0]
            self.slopeM[bn] = slopeMp
    def findoffPhase(self,t,plane,MADTwiss,phaselist):

        print "METHOD => Start calculating off-momentum phase"

        # t is collection of twiss files
        dpplist=[]
        for i in range(len(phaselist)): #### for sorting

            dpplist.append(phaselist[i]['DPP'])
        dpplist.sort()

        if len(t)<2:
            print " Not enough files \n ... I cannot work like this! => sys.exit()"
            sys.exit()

        self.bpms=intersect(t)
        self.bpms=modelIntersect(self.bpms, MADTwiss)
         
        self.slope={}
        self.slopeE={}
        self.slopeM={}

        print "The lenght of the bpms "+str(len(self.bpms))

        for i in range(len(self.bpms)):
            print i
            if i==len(self.bpms)-1:
                bn=upper(self.bpms[i][1])
                print bn
                print "hereeeeeee"
                bn2=upper(self.bpms[0][1])
            else:
                bn=upper(self.bpms[i][1])
                bn2=upper(self.bpms[i+1][1])
                
            phase=[]

            if plane=='H':
                slopeMp=MADTwiss.DMUX[MADTwiss.indx[bn2]]-MADTwiss.DMUX[MADTwiss.indx[bn]]	
            else:
                slopeMp=MADTwiss.DMUY[MADTwiss.indx[bn2]]-MADTwiss.DMUY[MADTwiss.indx[bn]]
       

            for k in range(len(dpplist)):
                count=0
                for j in range(len(phaselist)):

                    if dpplist[k]==phaselist[j]['DPP']:

                        if count==0:
                       
                            phase.append(phaselist[j][bn][0])
                            
                        count=1
                        
            a=FIT(dpplist,phase,1,1e-15)
            coef,error=a.linreg()

            self.slope[bn]=coef[0]
            self.slopeE[bn]=error[0]
            self.slopeM[bn]=slopeMp
    def findoffBB(self,t,plane,MADTwiss,betalist):

        print "METHOD => Starting to calculate off-momentum beta-beat"

        
	self.bpms=intersect(t)
	self.bpms=modelIntersect(self.bpms, MADTwiss)
	MADTwiss.chrombeat()

	self.slope={}
        self.slopeE={}
	self.slopeM={}

        dpplist=[]

        for i in range(len(betalist)): #### for sorting

            dpplist.append(betalist[i]['DPP'])

        
        dpplist.sort()
        
        #if dpplist[0]>dpplist[1]
        #dpplist.reverse()

        
	for i in range(len(self.bpms)):
            
            bn=upper(self.bpms[i][1])
            check=0
            slopei=0.0
            slopeiM=0.0
            beta=[]
            k=0
            

            for k in range(len(dpplist)):
                count=0
                for j in range(len(betalist)):
                    
                    if dpplist[k]==betalist[j]['DPP']:

                        if count==0:
                        
                            beta.append(betalist[j][bn][0])
                        count=1
                        
          
                  
            [slope, offset, R, slope_error, offset_error]=linreg.linreg(dpplist,beta)
           
            a=FIT(dpplist,beta,1,1e-15)
            #print ' list '+str(dpplist)
            coef,error=a.linreg()             
			
            if plane=='H':
                slopeiM=MADTwiss.dbx[MADTwiss.indx[upper(bn)]]
            else:
                slopeiM=MADTwiss.dby[MADTwiss.indx[upper(bn)]]
	
            #self.slope[bn]=coef[0]
            self.slope[bn]=coef[0]/100
            #self.slopeE[bn]=error[0]
            self.slopeE[bn]=error[0]/100
            self.slopeM[bn]=slopeiM