Esempio n. 1
0
def calc2(MS, R0=None, R1=None):
    if R0 == None:
        R0 = numpy.arange(0.05, 1.0, 0.05)
    if R1 == None:
        R1 = numpy.arange(0.05, 1.1, 0.05)

    LLmax = float('-inf')
    Mfit = copy.deepcopy(MS.M)
    print('Turning debugging OFF')
    fitglobals.debugoff()
    f = open('data.txt', 'w')
    f.write('# A0 A1 LL\n')
    for A0 in R0:
        for A1 in R1:
            # Mfit.P.A = numpy.matrix([[A0, 0], [0,A1]])
            MS.setParams(A0, A1, Mfit)
            LL = fitEKF.ekf(MS.Data, Mfit)
            if LL > LLmax:
                A0max = A0
                A1max = A1
                LLmax = LL
            f.write('%s %s %s\n' % (A0, A1, LL))
            print A0, A1, LL
        f.write('\n')
        print ""
    f.close()
    print 'Max Like =', LLmax, '@ (A0,A1) =', [A0max, A1max]
    simParams = MS.getParams()
    LLsim = MS.loglike(simParams[0], simParams[1])
    print 'Sim Like =', LLsim, '@ (A0, A1) =', simParams[0], simParams[1]
Esempio n. 2
0
 def fitloglike(self, A0=None, A1=None):
     simParams = self.getParams()
     if A0 == None:
         A0 = simParams[0]
     if A1 == None:
         A1 = simParams[1]
     Mtest = copy.deepcopy(self.M)
     self.setParams(A0, A1, Mtest)
     LL = fitEKF.ekf(self.Data, Mtest)
     return LL
Esempio n. 3
0
P.tstop = 20
P.dt = 0.1
P.A = numpy.matrix(0.5)
P.B = numpy.matrix([0.5, 0.4, 0.3])
P.InitialCov = numpy.matrix(1)
O1 = models.ObserveState0(P,5)
O2 = models.ObserveState0(P,6)
O1.Times.set([2,4,6,8,10,12,14,16,18,20])
O2.Times.set([3,6,9,12,15,18])
O1.sigma = 0.001
O2.sigma = 0.0001
Obs = models.ObservationModel(P,5,[O1,O2])
#Sys = models.DecayModel(P,0,3)
Sys = models.NeuronModel(P,0,3)
Sys.Injection.set([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
M = models.Model(Sys,Obs,P)

# Turn noise off and simulate
P.B = numpy.matrix([0.,0.,0.])
# Not needed: change(P)
M.Obs.C[0].sigma = 0
M.Obs.C[1].sigma = 0
Data = M.sim()

# Turn noise back on and calculate log-likelihood
P.B = numpy.matrix([0.5, 0.4, 0.3])
# Not needed: change(P)
M.Obs.C[0].sigma = 0.001
M.Obs.C[1].sigma = 0.0001
LL = fitEKF.ekf(Data,M)
Esempio n. 4
0
def calc0(MS):
    Mfit = copy.deepcopy(MS.M)
    LL = fitEKF.ekf(MS.Data, Mfit)
    print 'Like =', LL