Esempio n. 1
0
def get_video_from_model(model_name,
                         parameter_filename,
                         save_directory,
                         filename,
                         reward_level="team",
                         num_agents=2):
    fitness_calculator = FitnessCalculator(parameter_filename)
    results = None

    if reward_level == "team":

        full_genome = np.load(model_name)
        agent_list = []

        for i in range(num_agents):
            start = i * int(len(full_genome) / num_agents)
            end = (i + 1) * int(len(full_genome) / num_agents)
            sub_genome = full_genome[start:end]
            agent = NNAgent(fitness_calculator.get_observation_size(),
                            fitness_calculator.get_action_size(),
                            parameter_filename, sub_genome)
            agent_list += [agent]
        '''full_genome = NNAgent.load_model_from_file(model_name)
        mid = int(len(full_genome) / num_agents)
        agent_list = []

        for i in range(num_agents):
            genome = full_genome[mid*i : mid*(i+1)]
            agent = NNAgent(fitness_calculator.get_observation_size(), fitness_calculator.get_action_size(),
                          parameter_filename, genome)
            agent_list += [agent]'''

        results = fitness_calculator.calculate_fitness(agent_list=agent_list,
                                                       render=True,
                                                       time_delay=0,
                                                       render_mode="rgb_array")

    elif reward_level == "individual":
        agent_list = []

        for i in range(num_agents):
            genome = NNAgent.load_model_from_file(model_name)
            agent = NNAgent(fitness_calculator.get_observation_size(),
                            fitness_calculator.get_action_size(),
                            parameter_filename, genome)
            agent_list += [agent]

        results = fitness_calculator.calculate_fitness(agent_list=agent_list,
                                                       render=True,
                                                       time_delay=0,
                                                       render_mode="rgb_array")

    video_data = results['video_frames']
    save_to = f"{save_directory}/{filename}"
    write_gif(video_data, save_to, fps=5)
Esempio n. 2
0
def visualise_decentralised():
    '''
    agent_1_path = "/home/mriz9/Code/TS-Platform/results/2021_02_23_decentralised_test/results/decentralised_cma_with_seeding_heterogeneous_individual_nn_slope_1_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_100_0.001_0.0_0_59324.79999999987_final.npy"
    agent_2_path = "/home/mriz9/Code/TS-Platform/results/2021_02_23_decentralised_test/results/decentralised_cma_with_seeding_heterogeneous_individual_nn_slope_1_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_100_0.001_0.0_1_60900.0_final.npy"
    parameter_filename = "/home/mriz9/Code/TS-Platform/results/2021_02_23_decentralised_test/experiments/decentralised_test.json"
    '''

    agent_1_path = "/Users/mostafa/Documents/Code/PhD/TS-Platform/results/2021_02_23_decentralised_test/results/decentralised_cma_with_seeding_heterogeneous_individual_nn_slope_1_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_100_0.001_0.0_0_59324.79999999987_final.npy"
    agent_2_path = "/Users/mostafa/Documents/Code/PhD/TS-Platform/results/2021_02_23_decentralised_test/results/decentralised_cma_with_seeding_heterogeneous_individual_nn_slope_1_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_100_0.001_0.0_1_60900.0_final.npy"
    parameter_filename = "/Users/mostafa/Documents/Code/PhD/TS-Platform/results/2021_02_23_decentralised_test/experiments/decentralised_test.json"

    fitness_calculator = FitnessCalculator(parameter_filename)

    genome_1 = np.load(agent_1_path)
    genome_2 = np.load(agent_2_path)
    agent_1 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      genome_1)
    agent_2 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      genome_2)
    results = fitness_calculator.calculate_fitness(
        agent_list=[agent_1, agent_2],
        render=False,
        time_delay=0,
        measure_specialisation=True,
        logging=False,
        logfilename=None,
        render_mode="human")
    #print(results)
    team_score = np.mean([
        results['fitness_matrix'][0][i] + results['fitness_matrix'][1][i]
        for i in range(len(results['fitness_matrix']))
    ])
    print(team_score)
Esempio n. 3
0
def sample_individual(path_to_genome):
    model_name = path_to_genome.split("/")[-1]
    main_folder = "/".join(
        str(param) for param in path_to_genome.split("/")[:-2])
    experiments_folder = os.path.join(main_folder, "experiments")
    results_folder = os.path.join(main_folder, "results")

    parameter_filename = os.path.join(
        experiments_folder, "cma_with_seeding_" +
        "_".join(model_name.split("/")[-1].split("_")[1:-2]) + ".json")
    fitness_calculator = FitnessCalculator(parameter_filename)

    mean_array = np.load(path_to_genome)
    variance = None

    name_substring = "_".join(
        str(param) for param in model_name.split("/")[-1].split("_")[1:-2])
    regex_string = f'{results_folder}/cma_with_seeding_*{name_substring}*.log'
    log_files = glob(regex_string)

    if len(log_files) > 1 or len(log_files) < 1:
        raise RuntimeError("Inappropriate number of log files")

    log_file = log_files[0]
    g = open(log_file, "r")
    log_data = g.read().strip().split("\n")
    g.close()

    # If last line starts with Best, get line before
    flag = True
    i = -1
    while flag:
        if log_data[i].startswith("Best"):
            variance = float(log_data[i - 1].strip().split()[4]) / 10
            flag = False
        else:
            i -= 1

    # 1000 100000 -1.998880000000000e+04 2.4e+00 4.46e-02  4e-02  5e-02 526:49.5
    seed = int(model_name.split("/")[-1].split("_")[5])

    random_variable = multivariate_normal(mean=mean_array,
                                          cov=np.identity(len(mean_array)) *
                                          variance)
    team = random_variable.rvs(2, seed)
    agent_1 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      team[0])
    agent_2 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      team[1])
    results = fitness_calculator.calculate_fitness(
        agent_list=[agent_1, agent_2],
        render=True,
        time_delay=0.1,
        measure_specialisation=True,
        logging=False,
        logfilename=None,
        render_mode="human")
Esempio n. 4
0
def visualise_centralised():
    '''
    team_path = "/home/mriz9/Code/TS-Platform/results/2021_02_23_decentralised_test/results/centralised_cma_with_seeding_heterogeneous_team_nn_slope_1_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_100_0.001_0.0_33848.09000000001_final.npy"
    parameter_filename = "/home/mriz9/Code/TS-Platform/results/2021_02_23_decentralised_test/experiments/centralised_test.json"
    '''
    team_path = "/Users/mostafa/Documents/Code/PhD/TS-Platform/results/2021_03_16_equal_games_per_learner_sequential/results/centralised_cma_heterogeneous_team_nn_slope_491264_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_100_5_False_rnn_False_1_4_tanh_100_0.2_1000_0.001_0.0_1000_0.0_10735.8_final.npy"
    parameter_filename = "/Users/mostafa/Documents/Code/PhD/TS-Platform/results/2021_03_16_equal_games_per_learner_sequential/experiments/centralised_cma_heterogeneous_team_nn_slope_491264_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_100_5_False_rnn_False_1_4_tanh_100_0.2_1000_0.001_0.0_1000_0.0.json"
    fitness_calculator = FitnessCalculator(parameter_filename)

    full_genome = np.load(team_path)
    mid = int(len(full_genome) / 2)
    genome_part_1 = full_genome[0:mid]
    genome_part_2 = full_genome[mid:]
    agent_1 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      genome_part_1)
    agent_2 = NNAgent(fitness_calculator.get_observation_size(),
                      fitness_calculator.get_action_size(), parameter_filename,
                      genome_part_2)
    results = fitness_calculator.calculate_fitness(
        agent_list=[agent_1, agent_2],
        render=False,
        time_delay=0,
        measure_specialisation=True,
        logging=False,
        logfilename=None,
        render_mode="human")
    #print(results)
    team_score = np.mean([
        results['fitness_matrix'][0][i] + results['fitness_matrix'][1][i]
        for i in range(len(results['fitness_matrix']))
    ])
    metric_index = 2  # R_spec
    specialisation = np.mean(
        [spec[metric_index] for spec in results['specialisation_list']])
    print(team_score)
    print(specialisation)
Esempio n. 5
0
arena_width = num_agents*2
num_resources = arena_width

parameter_path = "default_empirical_parameters.json"
parameter_dictionary = json.loads(open(parameter_path).read())
parameter_dictionary["environment"]["slope"]["sliding_speed"] = sliding_speed
parameter_dictionary["environment"]["slope"]["num_agents"] = num_agents
parameter_dictionary["environment"]["slope"]["arena_width"] = arena_width
parameter_dictionary["environment"]["slope"]["num_resources"] = num_resources

f = open("temp.json", "w")
dictionary_string = json.dumps(parameter_dictionary, indent=4)
f.write(dictionary_string)
f.close()

fitness_calculator = FitnessCalculator("temp.json")
available_agents = [HardcodedHitchhikerAgent, HardcodedGeneralistAgent, HardcodedDropperAgent, HardcodedCollectorAgent]
strategy_name = {HardcodedHitchhikerAgent: "Novice",
            HardcodedGeneralistAgent: "Generalist",
            HardcodedDropperAgent: "Dropper",
            HardcodedCollectorAgent: "Collector"}
strategies = ["Novice", "Generalist", "Dropper", "Collector"]

if num_agents == 2:
    for class1 in available_agents:
        row = []
        for class2 in available_agents:
            agent1 = class1()
            agent2 = class2()
            agent_list = [agent1, agent2]
            #if type(agent1) == HardcodedCollectorAgent or type(agent2) == HardcodedCollectorAgent:
Esempio n. 6
0
        genome_to_vis = genome
        fitness_list = episode_scores
        mean_fitness = np.mean(fitness_list)
        spec_list = raw_spec_scores[rspec_index]

        # Exit loop if 0 spec is found
        if avg_spec == 0:
            break

# Visualise
print(min_spec)
print(spec_list)
print(mean_fitness)
print(fitness_list)
full_genome = genome_to_vis
fitness_calculator = FitnessCalculator(parameter_filename)

mid = int(len(full_genome) / 2)
genome_part_1 = full_genome[0:mid]
genome_part_2 = full_genome[mid:]
agent_1 = NNAgent(fitness_calculator.get_observation_size(),
                  fitness_calculator.get_action_size(), parameter_filename,
                  genome_part_1)
agent_2 = NNAgent(fitness_calculator.get_observation_size(),
                  fitness_calculator.get_action_size(), parameter_filename,
                  genome_part_2)
results = fitness_calculator.calculate_fitness(agent_list=[agent_1, agent_2],
                                               render=True,
                                               time_delay=0.1,
                                               measure_specialisation=True,
                                               logging=False,
Esempio n. 7
0
import argparse
from fitness import FitnessCalculator
'''
parser = argparse.ArgumentParser(description='Run an experiment')
parser.add_argument('--parameters', action="store", dest="parameter_filename")
parameter_filename = parser.parse_args().parameter_filename

fitness_calculator = FitnessCalculator(parameter_filename)
learner = RWGLearner(fitness_calculator)
genome, fitness = learner.learn()
'''

parameter_filename = "default_parameters.json"
fitness_calculator = FitnessCalculator(parameter_filename)

# Bootstrap
"""
learner = RWGLearner(fitness_calculator)
genome, fitness = learner.learn()
"""

# Evolve
"""
learner = CMALearner(fitness_calculator)
genome, fitness = learner.learn()
"""

# Visualise
"""
Homogeneous or Het-Ind
genome = NNAgent.load_model_from_file(model_name)
Esempio n. 8
0
def evaluate_model(model_path, episodes=None, rendering=None, time_delay=None, print_scores=None, ids_to_remove=None, dummy_observations=False, bc_measure=None, save_video=False, slope=None):
    if rendering == "True":
        rendering = True
    else:
        rendering = False

    if time_delay:
        time_delay = float(time_delay)
    else:
        time_delay = 0

    data_directory = "/".join(model_path.split("/")[:-1])
    model_filename = model_path.split("/")[-1]

    learning_type = model_filename.split("_")[0]
    algorithm_selected = model_filename.split("_")[1]

    if algorithm_selected != "rwg":
        generation = model_filename.split("_")[-1].strip(".npy")

        if learning_type == "centralised" or learning_type == "fully-centralised":
            parameter_list = model_filename.split("_")[:-2]
            parameter_filename = "_".join(parameter_list) + ".json"
            agent_index = "None"
        elif learning_type == "decentralised":
            parameter_list = model_filename.split("_")[:-3]
            parameter_filename = "_".join(parameter_list) + ".json"
            agent_index = model_filename.split("_")[-3]
        else:
            raise RuntimeError("Learning type must be centralised, decentralised or fully centralised")

    else:
        parameter_list = model_filename.split("_")[:-1]
        parameter_filename = "_".join(parameter_list) + ".json"
        agent_index = "None"

    parameter_path = os.path.join(data_directory, parameter_filename)
    parameter_dictionary = json.loads(open(parameter_path).read())
    environment = parameter_dictionary["general"]["environment"]
    num_agents = parameter_dictionary["environment"][environment]["num_agents"]
    agent_list = []

    if slope is not None:
        parameter_dictionary["environment"][environment]["sliding_speed"] = slope

    dictionary_changed = False

    if episodes and parameter_dictionary["environment"][environment]["num_episodes"] != episodes:
        parameter_dictionary["environment"][environment]["num_episodes"] = episodes
        dictionary_changed = True

    if bc_measure and parameter_dictionary["environment"][environment]["bc_measure"] != bc_measure:
        parameter_dictionary["environment"][environment]["bc_measure"] = bc_measure
        dictionary_changed = True

    if dictionary_changed:
        new_parameter_path = os.path.join(data_directory, "temp.json")
        f = open(new_parameter_path, "w")
        dictionary_string = json.dumps(parameter_dictionary, indent=4)
        f.write(dictionary_string)
        f.close()
        fitness_calculator = FitnessCalculator(new_parameter_path)

    else:
        fitness_calculator = FitnessCalculator(parameter_path)

    if parameter_dictionary["general"]["learning_type"] == "centralised" and \
            parameter_dictionary["general"]["reward_level"] == "team" and \
            parameter_dictionary["general"]["team_type"] == "heterogeneous":

        full_genome = np.load(model_path)

        for i in range(num_agents):
            if ids_to_remove and i in ids_to_remove:
                agent = HardcodedHitchhikerAgent()

            else:
                start = i * int(len(full_genome) / num_agents)
                end = (i + 1) * int(len(full_genome) / num_agents)
                sub_genome = full_genome[start:end]
                agent = NNAgent(fitness_calculator.get_observation_size(), fitness_calculator.get_action_size(),
                                parameter_path, sub_genome)

            agent_list += [agent]

    elif (parameter_dictionary["general"]["learning_type"] == "centralised" and \
            parameter_dictionary["general"]["reward_level"] == "individual") or \
            parameter_dictionary["general"]["team_type"] == "homogeneous":

        for i in range(num_agents):
            if ids_to_remove and i in ids_to_remove:
                agent = HardcodedHitchhikerAgent()

            else:
                genome = np.load(model_path)
                agent = NNAgent(fitness_calculator.get_observation_size(),
                                   fitness_calculator.get_action_size(), parameter_path, genome)

            agent_list += [agent]

    elif parameter_dictionary["general"]["learning_type"] == "decentralised" and \
            parameter_dictionary["general"]["reward_level"] == "individual":

        # Find genomes of all teammates
        genome_prefix = "_".join(str(item) for item in parameter_list)
        genome_suffix = f"{generation}.npy"
        all_genome_files = glob(f"{data_directory}/{genome_prefix}*{genome_suffix}")

        assert len(all_genome_files) == num_agents, "Number of genome files does not match number of agents on the team"

        for i, genome_file in enumerate(all_genome_files):

            if ids_to_remove and i in ids_to_remove:
                agent = HardcodedHitchhikerAgent()

            else:
                genome = np.load(genome_file)
                agent = NNAgent(fitness_calculator.get_observation_size(),
                                fitness_calculator.get_action_size(), parameter_path, genome)

            agent_list += [agent]

    elif parameter_dictionary["general"]["learning_type"] == "fully-centralised":
        genome = np.load(model_path)

        if ids_to_remove:
            agent = NNAgent(fitness_calculator.get_observation_size() * num_agents,
                            fitness_calculator.get_action_size() * num_agents, parameter_path, genome, ids_to_remove, HardcodedHitchhikerAgent, dummy_observations)

        else:
            agent = NNAgent(fitness_calculator.get_observation_size() * num_agents,
                            fitness_calculator.get_action_size() * num_agents, parameter_path, genome)

        agent_list = [agent]

    if not save_video:

        results = fitness_calculator.calculate_fitness(controller_list=agent_list, render=rendering, time_delay=time_delay,
                                                       measure_specialisation=True, logging=False, logfilename=None,
                                                       render_mode="human")

    else:
        results = fitness_calculator.calculate_fitness(controller_list=agent_list, render=rendering, time_delay=time_delay,
                                                       measure_specialisation=True, logging=False, logfilename=None,
                                                       render_mode="rgb_array")

    team_fitness_list = [0] * len(results['fitness_matrix'][0])

    for j in range(num_agents):
        team_fitness_list = list(map(add, team_fitness_list, results['fitness_matrix'][j]))

    team_score = np.mean(team_fitness_list)
    agent_scores = [np.mean(scores) for scores in results['fitness_matrix']]
    specialisation_each_episode = [spec[metric_index] for spec in results['specialisation_list']]
    specialisation = np.mean(specialisation_each_episode)

    if print_scores == "True":
        #print(results['fitness_matrix'])
        print(f"Team fitness each episode: {team_fitness_list}")
        print(f"Team specialisation each episode {specialisation_each_episode}")
        print(f"Mean score for each agent: {agent_scores}")
        print(f"Mean score for whole team: {team_score}")
        print(f"Mean specialisation for whole team {specialisation}")
        print("----")
        for index,agent_episodes in enumerate(results['fitness_matrix']):
            print(f"Agent {index}: {agent_episodes}")

    return results
Esempio n. 9
0
def run_experiment(parameter_filename):
    parameter_dictionary = json.loads(open(parameter_filename).read())
    fitness_calculator = FitnessCalculator(parameter_filename)

    if parameter_dictionary["general"]["algorithm_selected"] == "rwg":
        if parameter_dictionary["general"]["learning_type"] == "centralised":
            learner = CentralisedRWGLearner(fitness_calculator)
        elif parameter_dictionary["general"]["learning_type"] == "fully-centralised":
            learner = FullyCentralisedRWGLearner(fitness_calculator)
        else:
            raise RuntimeError("Invalid learning type for rwg")

        genome, fitness = learner.learn()

    elif parameter_dictionary["general"]["algorithm_selected"] == "cma":

        if parameter_dictionary["algorithm"]["cma"]["seeding_included"] == "True":
            #if parameter_dictionary["general"]["learning_type"] == "fully-centralised":
            #    raise RuntimeError("Seeding included is not yet supported for fully centralised")

            # Load default rwg parameters
            if parameter_dictionary["general"]["environment"] == "slope":
                default_rwg_parameter_filename = 'default_slope_rwg_parameters_individual.json'

            rwg_parameter_dictionary = json.loads(open(default_rwg_parameter_filename).read())

            # Copy general parameters from cma to rwg
            rwg_parameter_dictionary["general"] = copy.deepcopy(parameter_dictionary["general"])
            rwg_parameter_dictionary["general"]["algorithm_selected"] = "rwg"

            if parameter_dictionary["general"]["learning_type"] == "decentralised":
                rwg_parameter_dictionary["general"]["learning_type"] = "centralised"

            if parameter_dictionary["general"]["reward_level"] == "team":
                rwg_parameter_dictionary["general"]["reward_level"] = "team"
                environment_name = parameter_dictionary["general"]["environment"]

                if parameter_dictionary["general"]["team_type"] == "heterogeneous":
                    rwg_parameter_dictionary["algorithm"]["agent_population_size"] *= parameter_dictionary["environment"][environment_name]["num_agents"]

            # Copy environment parameters from cma to rwg
            rwg_parameter_dictionary["environment"] = copy.deepcopy(parameter_dictionary["environment"])

            if rwg_parameter_dictionary["general"]["reward_level"] == "individual":
                environment_name = rwg_parameter_dictionary["general"]["environment"]
                rwg_parameter_dictionary["environment"][environment_name]["num_agents"] = 1

            # Copy agent parameters from cma to rwg
            rwg_parameter_dictionary["agent"] = copy.deepcopy(parameter_dictionary["agent"])

            # Create rwg json file and load to fitness calculator
            parameters_in_name = Learner.get_core_params_in_model_name(rwg_parameter_dictionary)

            if parameter_dictionary["general"]["learning_type"] == "centralised":
                parameters_in_name += CentralisedRWGLearner.get_additional_params_in_model_name(rwg_parameter_dictionary)

            elif parameter_dictionary["general"]["learning_type"] == "fully-centralised":
                parameters_in_name += FullyCentralisedRWGLearner.get_additional_params_in_model_name(rwg_parameter_dictionary)

            new_rwg_parameter_filename = "_".join([str(param) for param in parameters_in_name]) + ".json"
            f = open(new_rwg_parameter_filename, "w")
            rwg_dictionary_string = json.dumps(rwg_parameter_dictionary, indent=4)
            f.write(rwg_dictionary_string)
            f.close()
            rwg_fitness_calculator = FitnessCalculator(new_rwg_parameter_filename)

            # Seeding
            if parameter_dictionary["general"]["learning_type"] == "fully-centralised":
                learner1 = FullyCentralisedRWGLearner(rwg_fitness_calculator)

            else:
                learner1 = CentralisedRWGLearner(rwg_fitness_calculator)

            genome1, fitness1 = learner1.learn()

            # Learning
            if parameter_dictionary["general"]["learning_type"] == "centralised":
                learner2 = CentralisedCMALearner(fitness_calculator)
                genome2, fitness2 = learner2.learn()

            elif parameter_dictionary["general"]["learning_type"] == "decentralised":
                learner2 = DecentralisedCMALearner(fitness_calculator)
                genomes, fitnesses = learner2.learn()

            elif parameter_dictionary["general"]["learning_type"] == "fully-centralised":
                learner2 = FullyCentralisedCMALearner(fitness_calculator)
                genomes, fitnesses = learner2.learn()

        else:
            if parameter_dictionary["general"]["learning_type"] == "centralised":
                learner = CentralisedCMALearner(fitness_calculator)
                genome, fitness = learner.learn()

            elif parameter_dictionary["general"]["learning_type"] == "decentralised":
                learner = DecentralisedCMALearner(fitness_calculator)
                genomes, fitnesses = learner.learn()

            elif parameter_dictionary["general"]["learning_type"] == "fully-centralised":
                learner = FullyCentralisedCMALearner(fitness_calculator)
                genomes, fitnesses = learner.learn()

    elif parameter_dictionary["general"]["algorithm_selected"] == "ga":
        if parameter_dictionary["general"]["learning_type"] == "centralised":
            learner = CentralisedGALearner(fitness_calculator)
            genome, fitness = learner.learn()
Esempio n. 10
0
def calculate_agent_fitness_distribution(reward_level, num_genomes,
                                         samples_per_genome, logfile_name):
    ind_parameter_files = {
        2:
        "cma_heterogeneous_individual_nn_slope_4005303369_2_4_1_0_8_4_1_3_7_1_1.0_1.0_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_1000_0.001_200.0.json",
        4:
        "cma_heterogeneous_individual_nn_slope_550290314_4_8_1_4_8_8_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_1000_0.001_200.0.json",
        6:
        "cma_heterogeneous_individual_nn_slope_1298508492_6_12_1_4_8_12_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_300_0.2_1000_0.001_200.0.json",
        8:
        "cma_heterogeneous_individual_nn_slope_1298508492_8_16_1_4_8_16_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_400_0.2_1000_0.001_200.0.json",
        10:
        "cma_heterogeneous_individual_nn_slope_878115724_10_20_1_4_8_20_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_500_0.2_1000_0.001_200.0.json"
    }

    team_parameter_files = {
        2:
        "cma_heterogeneous_team_nn_slope_491264_2_4_1_4_8_4_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_1000_0.001_200.0.json",
        4:
        "cma_heterogeneous_team_nn_slope_630311760_4_8_1_4_8_8_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_1000_0.001_200.0.json",
        6:
        "cma_heterogeneous_team_nn_slope_4033523167_6_12_1_4_8_12_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_120_0.2_1000_0.001_200.0.json",
        8:
        "cma_heterogeneous_team_nn_slope_1355129330_8_16_1_4_8_16_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_160_0.2_1000_0.001_200.0.json",
        10:
        "cma_heterogeneous_team_nn_slope_1791095846_10_20_1_4_8_20_1_3_7_1_3.0_0.2_2_1000_500_20_rnn_False_1_4_tanh_100_0.2_1000_0.001_200.0.json"
    }

    ind_genomes = get_genomes(reward_level="individual",
                              num_genomes=num_genomes)
    team_genomes = get_genomes(reward_level="team", num_genomes=num_genomes)

    default_num_episodes = 20
    f = None

    assert len(ind_genomes[2]) == len(
        team_genomes[2]
    ), "Not testing the same number of genomes for ind and team setups"
    genomes_per_team = len(ind_genomes[2])

    if not os.path.exists(logfile_name):
        f = open(logfile_name, "w")
        header_string = ",".join([
            str(episode_num)
            for episode_num in range(samples_per_genome * genomes_per_team)
        ])
        f.write(f"num_agents,reward_level,{header_string}\n")
    else:
        f = open(logfile_name, "a")

    for num_agents in range(2, 12, 2):
        # Get parameter and genome files
        parameter_filename = None
        top_genomes = None

        if reward_level == "individual":
            parameter_filename = ind_parameter_files[num_agents]
            top_genomes = ind_genomes

        elif reward_level == "team":
            parameter_filename = team_parameter_files[num_agents]
            top_genomes = team_genomes

        # Change number of episodes to the relevant number
        parameter_dictionary = json.loads(open(parameter_filename).read())
        new_num_episodes = int(samples_per_genome / num_agents)
        parameter_dictionary["environment"]["slope"][
            "num_episodes"] = new_num_episodes

        g = open(parameter_filename, "w")
        dictionary_string = json.dumps(parameter_dictionary, indent=4)
        g.write(dictionary_string)
        g.close()

        # Create fitness calculator
        fitness_calculator = FitnessCalculator(parameter_filename)

        # List of fitnesses for num_agents
        agent_fitnesses = []

        for index in range(len(top_genomes[num_agents])):
            genome = top_genomes[num_agents][index]

            # Make genome list
            genomes_list = []
            agents_list = []

            if reward_level == "individual":
                for i in range(num_agents):
                    genomes_list += [genome]
                    agents_list += [
                        NNAgent(fitness_calculator.get_observation_size(),
                                fitness_calculator.get_action_size(),
                                parameter_filename, genomes_list[i])
                    ]

            elif reward_level == "team":
                full_genome = genome
                genome_part_length = int(len(full_genome) / num_agents)

                for i in range(num_agents):
                    genomes_list += [
                        full_genome[i * genome_part_length:(i + 1) *
                                    genome_part_length]
                    ]
                    agents_list += [
                        NNAgent(fitness_calculator.get_observation_size(),
                                fitness_calculator.get_action_size(),
                                parameter_filename, genomes_list[i])
                    ]

            results = fitness_calculator.calculate_fitness(agents_list,
                                                           render=False,
                                                           time_delay=0)

            # Log fitness distribution
            for agent_scores in results["fitness_matrix"]:
                agent_fitnesses += agent_scores

        # Log to file
        std_string = ",".join([str(fitness) for fitness in agent_fitnesses])
        f.write(f"{num_agents},{reward_level},{std_string}\n")

        # Change number of episodes back
        parameter_dictionary = json.loads(open(parameter_filename).read())
        parameter_dictionary["environment"]["slope"][
            "num_episodes"] = default_num_episodes
        g = open(parameter_filename, "w")
        dictionary_string = json.dumps(parameter_dictionary, indent=4)
        g.write(dictionary_string)
        g.close()

    f.close()