Esempio n. 1
0
def fit_temp_pow_sweep(fname):
    """
    Osmond Wen, December 10, 2019
    decription: finds the resonant frequencies from the combined temperature and
                power sweep performed by powsweep.sweep_temp_pow
    """
    fr, Qr = {}, {}
    with h5.File(fname) as fyle:
        fr_list_0 = fyle["S21/fr_list"][:]
        full_location = "tempsweep/2019-12-06-14-35-28"
        for temperature in np.array(fyle[full_location].keys()):
            print 'Temperature: ', temperature
            powernams = np.array(fyle[full_location+"/"+temperature].keys())
            powervals = powernams.astype(np.float)
            powernams = powernams[powervals.argsort()]
            fr[float(temperature)] = {}
            Qr[float(temperature)] = {}
            for power in powernams:
                print '    Power: ', power
                df = pd.read_hdf(fname, key=full_location+"/"+temperature+"/"+power)
                fr[float(temperature)][float(power)] = {}
                Qr[float(temperature)][float(power)] = {}
                for resID, fr_nominal in enumerate(fr_list_0):
                    print '         Resonator: ', resID
                    df_thisKID = df[df.resID == resID]
                    f_thisKID = df_thisKID.f.values
                    z_thisKID = df_thisKID.z.values
                    fr[float(temperature)][float(power)][resID],\
                    Qr[float(temperature)][float(power)][resID],\
                    _,_,_,_,_ = \
                    fitres.finefit(f_thisKID, z_thisKID, fr_nominal)
    return fr, Qr
def vna_file_fit(filename,pickedres,show=False,save=False):
    pickedres = np.array(pickedres)
    VNA_f, VNA_z = read_vna(filename, decimation=1)
    VNA_f = VNA_f*1e-3 # from MHz to GHz
    frs = np.zeros(len(pickedres))
    Qrs = np.zeros(len(pickedres))
    for MKIDnum in range(len(pickedres)):
        MKID_index = np.argmin(abs(VNA_f-pickedres[MKIDnum]))
        index_range = 5000
        MKID_f = VNA_f[max(MKID_index-index_range,0):min(MKID_index+index_range,len(VNA_f))]
        MKID_z = VNA_z[max(MKID_index-index_range,0):min(MKID_index+index_range,len(VNA_f))]
        #MKID_f = VNA_f[(VNA_f>=pickedres[MKIDnum]-)*(VNA_f<=pickedres[MKIDnum]+)]
        frs[MKIDnum], Qrs[MKIDnum], Qc_hat, a, phi, tau, Qc = fitres.finefit(MKID_f, MKID_z, pickedres[MKIDnum])

        if show:
            fit_z = fitres.resfunc3(MKID_f, frs[MKIDnum], Qrs[MKIDnum], Qc_hat, a, phi, tau)
            #MKID_z_corrected = 1-((1-MKID_z/(a*np.exp(-2j*np.pi*(MKID_f-frs[MKIDnum])*tau)))*(np.cos(phi)/np.exp(1j*phi)))
            #fit_z_corrected = 1-(Qrs[MKIDnum]/Qc)/(1+2j*Qrs[MKIDnum]*(MKID_f-frs[MKIDnum])/frs[MKIDnum])
            plt.plot(MKID_f,20*np.log10(abs(MKID_z)))
            plt.plot(MKID_f,20*np.log10(abs(fit_z)))
            plt.show()
        if save:
            fit_z = fitres.resfunc3(MKID_f, frs[MKIDnum], Qrs[MKIDnum], Qc_hat, a, phi, tau)
            #MKID_z_corrected = 1-((1-MKID_z/(a*np.exp(-2j*np.pi*(MKID_f-frs[MKIDnum])*tau)))*(np.cos(phi)/np.exp(1j*phi)))
            #fit_z_corrected = 1-(Qrs[MKIDnum]/Qc)/(1+2j*Qrs[MKIDnum]*(MKID_f-frs[MKIDnum])/frs[MKIDnum])
            plt.plot(MKID_f,20*np.log10(abs(MKID_z)))
            plt.plot(MKID_f,20*np.log10(abs(fit_z)))
            plt.savefig(filename[:-3]+'_res'+str(MKIDnum)+'.png')
            plt.close()

    return frs, Qrs
Esempio n. 3
0
def fit_single_sweep(fname, sweeptype, sdate, sweep, h5_rewrite = False):
    with h5.File(fname) as fyle:
        fr_list_0 = fyle["S21/fr_list"][:]

        df = pd.read_hdf(fname, "{}/{}/{}".format(sweeptype, sdate, sweep))

        num_res = len(fr_list_0)
        fr_list, Qr_list, Qc_mag_list, a_list, phi_list, tau_list, Qc_list = \
        [None]*num_res, [None]*num_res, [None]*num_res, [None]*num_res, [None]*num_res, [None]*num_res, [None]*num_res
        for resID, fr_nominal in enumerate(fr_list_0):
            print sweep, fr_nominal
            df_temp = df[df.resID == resID]
            fwindow = 5e-4 # (max(df_temp.f) - min(df_temp.f)) / 2.0
            f_curr = df_temp.f.values
            z_curr = df_temp.z.values
            # print f_curr
            # print z_curr
            try:
                fr_list[resID], \
                Qr_list[resID], \
                Qc_mag_list[resID], \
                a_list[resID], \
                phi_list[resID], \
                tau_list[resID], \
                Qc_list[resID] = \
                fitres.finefit(f_curr, z_curr, fr_nominal)
            except:
                print "couldn't find a fit"
                fr_list[resID], Qr_list[resID], Qc_mag_list[resID], a_list[resID], phi_list[resID], tau_list[resID], Qc_list[resID] = \
                0, 0, 0, 0, 0, 0, 0
        if h5_rewrite == True:
            with h5.File(fname, "r+") as fyle:
                if "{}/{}/{}/fr_list".format(sweeptype,sdate,sweep) in fyle:
                    fyle.__delitem__("{}/{}/{}/fr_list".format(sweeptype,sdate,sweep))
                if "{}/{}/{}/Qr_list".format(sweeptype,sdate,sweep) in fyle:
                    fyle.__delitem__("{}/{}/{}/Qr_list".format(sweeptype,sdate,sweep))
                if "{}/{}/{}/Qc_list".format(sweeptype,sdate,sweep) in fyle:
                    fyle.__delitem__("{}/{}/{}/Qc_list".format(sweeptype,sdate,sweep))


                fyle["{}/{}/{}/fr_list".format(sweeptype,sdate,sweep)] = fr_list
                fyle["{}/{}/{}/Qr_list".format(sweeptype,sdate,sweep)] = Qr_list
                fyle["{}/{}/{}/Qc_list".format(sweeptype,sdate,sweep)] = Qc_list
    result = pd.DataFrame({"fr_list":fr_list, "Qr_list":Qr_list, "Qc_mag_list":Qc_mag_list, "a_list":a_list, "phi_list":phi_list, "tau_list":tau_list, "Qc_list": Qc_list})
    result["sweep"] = float(sweep)
    return result
Esempio n. 4
0
def vna_file_fit(filename, pickedres, show=False, save=False):
    pickedres = np.array(pickedres)
    VNA_f, VNA_z, _ = read_vna(filename, decimation=1)
    VNA_f = VNA_f * 1e-3  #VNA_f in units of GHz after this line

    frs = np.zeros(len(pickedres))
    Qrs = np.zeros(len(pickedres))
    for MKIDnum in range(len(pickedres)):
        window_f = (pickedres[MKIDnum] + 10 * pickedres[MKIDnum] / 3e5)
        window_index = np.argmin(abs(VNA_f - window_f))
        MKID_index = np.argmin(abs(VNA_f - pickedres[MKIDnum]))
        index_range = window_index - MKID_index
        MKID_f = VNA_f[max(MKID_index -
                           index_range, 0):min(MKID_index +
                                               index_range, len(VNA_f))]
        MKID_z = VNA_z[max(MKID_index -
                           index_range, 0):min(MKID_index +
                                               index_range, len(VNA_f))]
        frs[MKIDnum], Qrs[MKIDnum], Qc_hat, a, phi, tau, Qc = fitres.finefit(
            MKID_f, MKID_z, pickedres[MKIDnum])

        if show:
            fit_z = fitres.resfunc3(MKID_f, frs[MKIDnum], Qrs[MKIDnum], Qc_hat,
                                    a, phi, tau)
            #MKID_z_corrected = 1-((1-MKID_z/(a*np.exp(-2j*np.pi*(MKID_f-frs[MKIDnum])*tau)))*(np.cos(phi)/np.exp(1j*phi)))
            #fit_z_corrected = 1-(Qrs[MKIDnum]/Qc)/(1+2j*Qrs[MKIDnum]*(MKID_f-frs[MKIDnum])/frs[MKIDnum])
            plt.figure('how does the fit look')
            plt.plot(MKID_f, 20 * np.log10(abs(MKID_z)))
            plt.plot(MKID_f, 20 * np.log10(abs(fit_z)))
            plt.show()
            raw_input('press enter to move on')
            plt.close('all')
        if save:
            fit_z = fitres.resfunc3(MKID_f, frs[MKIDnum], Qrs[MKIDnum], Qc_hat,
                                    a, phi, tau)
            #MKID_z_corrected = 1-((1-MKID_z/(a*np.exp(-2j*np.pi*(MKID_f-frs[MKIDnum])*tau)))*(np.cos(phi)/np.exp(1j*phi)))
            #fit_z_corrected = 1-(Qrs[MKIDnum]/Qc)/(1+2j*Qrs[MKIDnum]*(MKID_f-frs[MKIDnum])/frs[MKIDnum])
            plt.plot(MKID_f, 20 * np.log10(abs(MKID_z)))
            plt.plot(MKID_f, 20 * np.log10(abs(fit_z)))
            plt.savefig(filename[:-3] + '_res' + str(MKIDnum) + '.png')
            plt.close()

    return frs, Qrs, Qc_hat, a, phi, tau, Qc
Esempio n. 5
0
def fit_temp_res(fname, sweepnum, pickedres=None):
    with h5py.File(fname, 'r') as fyle:
        timestamps = fyle['tempsweep'].keys()
        chosen_tempsweep = timestamps[
            sweepnum]  # Just the first temperature sweep saved in this file
        print chosen_tempsweep
        MCTemps1 = np.array(fyle['tempsweep/' + chosen_tempsweep].keys())
        MCTemps1 = MCTemps1[MCTemps1 != 'MB']
        MCTemps1 = MCTemps1[MCTemps1 != 'RES']

    df1 = pd.read_hdf(fname,
                      key='tempsweep/' + chosen_tempsweep + '/' + MCTemps1[0])

    if pickedres is not None:
        if isinstance(pickedres, int):
            MKIDnum = [pickedres]
        else:
            MKIDnum = pickedres
    else:
        MKIDnum = np.unique(df1['resID'])

    ID_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))
    fr_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))
    Qr_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))
    Qc_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))
    a_of_T = (1 + 1j) * np.zeros((len(MCTemps1), len(MKIDnum)))
    phi_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))
    tau_of_T = (1 + 1j) * np.zeros((len(MCTemps1), len(MKIDnum)))
    Qc_hat_mag_of_T = np.zeros((len(MCTemps1), len(MKIDnum)))

    print 'Doing resonance fits...'

    for Tn in range(len(MCTemps1)):
        temperature_Tn = MCTemps1[Tn]
        df1 = pd.read_hdf(fname,
                          key='tempsweep/' + chosen_tempsweep + '/' +
                          temperature_Tn)
        resID_index = df1['resID']

        for Kn in range(len(MKIDnum)):
            fr_0 = np.mean(df1['f0'][resID_index == MKIDnum[Kn]][0])
            if Tn > 0:
                if fr_of_T[Tn - 1, Kn] != 0:
                    fr_0 = fr_of_T[Tn - 1, Kn]
            f1 = df1['f']
            f_array = np.array(f1[resID_index == MKIDnum[Kn]])
            z1 = df1['z']
            z_array = np.array(z1[resID_index == MKIDnum[Kn]])

            try:
                fitted = fitres.finefit(f_array, z_array, fr_0)
            except:
                plt.plot(f_array, abs(z_array))
                plt.title('MKID ' + str(MKIDnum[Kn]) + ', ' +
                          str(MCTemps1[Tn]) + ' K')
                plt.show()
                fitted = [0, 0, 0, 0, 0, 0, 0]

            ID_of_T[Tn, Kn] = MKIDnum[Kn]
            fr_of_T[Tn, Kn] = fitted[0]
            Qr_of_T[Tn, Kn] = fitted[1]
            Qc_of_T[Tn, Kn] = fitted[6]
            a_of_T[Tn, Kn] = fitted[3]
            phi_of_T[Tn, Kn] = fitted[4]
            tau_of_T[Tn, Kn] = fitted[5]
            Qc_hat_mag_of_T[Tn, Kn] = fitted[2]

    df2 = pd.DataFrame()
    df2['resID'] = ID_of_T.flatten(order='F')
    df2['fr'] = fr_of_T.flatten(order='F')
    df2['Qr'] = Qr_of_T.flatten(order='F')
    df2['Qc'] = Qc_of_T.flatten(order='F')
    df2['a'] = a_of_T.flatten(order='F')
    df2['phi'] = phi_of_T.flatten(order='F')
    df2['tau'] = tau_of_T.flatten(order='F')
    df2['Qc_hat_mag'] = Qc_hat_mag_of_T.flatten(order='F')
    df2.to_hdf(fname, key='/tempsweep/' + chosen_tempsweep + '/RES')
Esempio n. 6
0
def resonator_basis(noise_timestream,readout_f,VNA_f,VNA_z,char_f,char_z):

    def rotate_to_ideal(z,f,fr,a,tau,phi):
        return 1-((1-z/(a*np.exp(-2j*np.pi*(f-fr)*tau)))*(np.cos(phi)/np.exp(1j*phi)))

    char_res_idx = int(len(char_f)/2)
    # Define region around this resonance, and fit for parameters
    index_range = 1000
    readout_index = PUf.find_closest(VNA_f,readout_f)
    MKID_f = VNA_f[max(readout_index-index_range,0):min(readout_index+index_range,len(VNA_f))]
    MKID_z = VNA_z[max(readout_index-index_range,0):min(readout_index+index_range,len(VNA_f))]
    fit_fr, fit_Qr, fit_Qc_hat, fit_a, fit_phi, fit_tau, fit_Qc = fitres.finefit(MKID_f, MKID_z, readout_f)
    fit_Qi = fit_Qr*fit_Qc/(fit_Qc-fit_Qr)
    print(fit_Qr,fit_Qc)


    # Transform VNA to ideal space
    MKID_z_ideal = rotate_to_ideal(MKID_z,MKID_f,fit_fr,fit_a,fit_tau,fit_phi)

    # Transform the VNA fit to ideal space
    fit_f = np.linspace(MKID_f[0],MKID_f[-1],10000)
    fit_z = fitres.resfunc3(fit_f, fit_fr, fit_Qr, fit_Qc_hat, fit_a, fit_phi, fit_tau)
    fit_z_ideal = rotate_to_ideal(fit_z,fit_f,fit_fr,fit_a,fit_tau,fit_phi)

    # find some important indices in the f vector
    first_char_fit_idx = PUf.find_closest(fit_f,char_f[0])
    last_char_fit_idx = PUf.find_closest(fit_f,char_f[-1])
    res_f_idx = PUf.find_closest(MKID_f,readout_f)
    res_fit_idx = PUf.find_closest(fit_f,readout_f)

    # Find VNA-data subset that covers the characterization-data region in frequency space
    char_region_f = fit_f[first_char_fit_idx:last_char_fit_idx]
    char_region_z = fit_z[first_char_fit_idx:last_char_fit_idx]
    char_region_z_ideal = fit_z_ideal[first_char_fit_idx:last_char_fit_idx]

    # Get the angle (in complex space) of the characterization data
    real_fit = np.polyfit(char_f,char_z.real,1)
    imag_fit = np.polyfit(char_f,char_z.imag,1)
    char_angle = np.angle((real_fit[0]*(char_region_f[-1]-char_region_f[0]))+1j*(imag_fit[0]*(char_region_f[-1]-char_region_f[0])))

    # Get the angle (in complex space) of the VNA data
    real_fit = np.polyfit(char_region_f,char_region_z.real,1)
    imag_fit = np.polyfit(char_region_f,char_region_z.imag,1)
    char_region_angle = np.angle((real_fit[0]*(char_region_f[-1]-char_region_f[0]))+1j*(imag_fit[0]*(char_region_f[-1]-char_region_f[0])))

    # Get the angle (in complex ideal space) of the VNA data
    real_fit = np.polyfit(char_region_f,char_region_z_ideal.real,1)
    imag_fit = np.polyfit(char_region_f,char_region_z_ideal.imag,1)
    char_region_ideal_angle = np.angle((real_fit[0]*(char_region_f[-1]-char_region_f[0]))+1j*(imag_fit[0]*(char_region_f[-1]-char_region_f[0])))

    # Rotate characterization data to VNA data
    char_z_rotated = (char_z-char_z[char_res_idx])\
                     *np.exp(1j*(-1*char_angle+char_region_angle))\
                     +fit_z[res_fit_idx]

    char_z_rotated_ideal = rotate_to_ideal(char_z_rotated,char_f,fit_fr,fit_a,fit_tau,fit_phi)

    timestream_rotated = (noise_timestream-np.mean(noise_timestream,dtype=complex))\
                      *np.exp(1j*(-1*char_angle+char_region_angle))\
                      +fit_z[res_fit_idx]

    timestream_rotated_ideal = rotate_to_ideal(timestream_rotated,readout_f,fit_fr,fit_a,fit_tau,fit_phi)
    dS21 = timestream_rotated_ideal-np.mean(timestream_rotated_ideal,dtype=complex)

    # Extra rotation for imaginary direction --> frequency tangent direction
    # This is necessary if data_freqs[0] != primary_fr
    # Note that char_f[res_idx] == data_freqs[0] should always be true
    # data_freqs[0] != primary_fr means our vna fit before data taking gave a different fr than our vna fit now

    phase_adjust = 1
    # phase_adjust = np.exp(1j*(np.sign(char_region_ideal_angle)*0.5*np.pi-char_region_ideal_angle))

    frequency = phase_adjust*dS21.imag*fit_Qc/(2*fit_Qr**2)
    dissipation = phase_adjust*dS21.real*fit_Qc/(fit_Qr**2)
    # print(type(frequency[2]),type(dissipation[2]),type(fit_Qc))

    ideal = {}
    ideal['f'] = MKID_f
    ideal['z'] = MKID_z_ideal
    ideal['char z'] = char_z_rotated_ideal
    ideal['timestream'] = timestream_rotated_ideal
    ideal['fit f'] = fit_f
    ideal['fit z'] = fit_z_ideal

    resonator = {}
    resonator['fr'] = fit_fr
    resonator['Qr'] = fit_Qr
    resonator['Qc'] = fit_Qc

    if False:
        # PUf.plot_noise_and_vna(noise_timestream,MKID_z,f_idx=res_f_idx,char_zs=char_z,title='S21')

        PUf.plot_noise_and_vna(timestream_rotated_ideal,MKID_z_ideal,\
                               f_idx=res_f_idx,char_zs=char_z_rotated_ideal,title='ideal space')
        plt.show(False)
        # plt.pause(5)
        raw_input('press enter to close all plots')
        plt.close('all')

        # plt.figure(2)
        # fit_fr_idx = PUf.find_closest(MKID_f,fit_fr)
        # # Plotting the corrected data (moved to ideal S21 space)
        # plt.gca().set_aspect('equal', adjustable='box')
        # plt.axvline(x=0,c='k')
        # plt.axhline(y=0,c='k')
        # plt.plot(MKID_z_ideal.real,MKID_z_ideal.imag,label='ideal space vna')
        # plt.plot(char_z_rotated_ideal.real,char_z_rotated_ideal.imag,label='calibrated calibration data')
        # plt.plot(MKID_z_ideal[res_f_idx].real,MKID_z_ideal[res_f_idx].imag,'o',label='vna closest to readout frequency')
        # plt.plot(MKID_z_ideal[fit_fr_idx].real,MKID_z_ideal[fit_fr_idx].imag,'o',label='vna closest to new fr')
        # plt.plot(timestream_rotated_ideal[::10].real,timestream_rotated_ideal[::10].imag,ls='',marker='.')
        # # plt.legend()
        # plt.show()

    return frequency, dissipation, ideal, resonator