Esempio n. 1
0
def load_catalog(filename=False,
                 header=False,
                 wcs=False,
                 ra_key=False,
                 dec_key=False):
    '''
    From Anna Marini: get positions from catalog.
    '''

    if filename and not header:
        header = get_fits_header(filename)
    if header and not wcs:
        wcs = WCS(header)
        if ra_key and dec_key:
            ra = header[ra_key]
            dec = header[dec_key]

    ra = wcs.wcs.crval[0]
    dec = wcs.wcs.crval[1]

    # Diagonal
    diag_bound = wcs.pixel_to_world_values([[0, 0], wcs.pixel_shape])
    radius = np.mean(diag_bound[1] - diag_bound[0]) / 2

    catalog = Catalogs.query_region(
        f'{ra} {dec}',
        # frame='icrs',
        # unit="deg",
        radius=radius,
        catalog='Gaia',
        version=2)

    return catalog
Esempio n. 2
0
def counts(filename,
           bias1='1_CCD_Image_34.fits',
           bias2='1_CCD_Image_47.fits',
           bias3='1_CCD_Image_75.fits',
           bias4='2_CCD_Image_191.fits',
           bias5='2_CCD_Image_244.fits',
           bias6='2_CCD_Image_277.fits',
           bias7='3_CCD_Image_52.fits',
           bias8='3_CCD_Image_103.fits',
           bias9='3_CCD_Image_152.fits'):

    header = get_fits_header(filename)

    camera = header['INSTRUME']
    temp = header['CCD-TEMP']

    if camera == 'Atik Cameras':
        if temp <= 0.3:
            mean_sub = np.mean(
                get_fits_data(filename)[1007:3007, 631:2040]) - np.mean(
                    get_fits_data(bias1))
        elif 0.3 < temp <= 1.3:
            mean_sub = np.mean(
                get_fits_data(filename)[1007:3007, 631:2040]) - np.mean(
                    get_fits_data(bias2))
        else:
            mean_sub = np.mean(
                get_fits_data(filename)[1007:3007, 631:2040]) - np.mean(
                    get_fits_data(bias3))  #intorno a 3
    elif camera == 'SBIG STL-11000 3 CCD Camera w/ AO':
        if -5.5 <= temp <= -3.7:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3508, 500:2172]) - np.mean(
                    get_fits_data(bias4))
        elif temp < -5.5:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3508, 500:2172]) - np.mean(
                    get_fits_data(bias5))
        else:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3508, 500:2172]) - np.mean(
                    get_fits_data(bias6))
    elif camera == 'SBIG STX-16801 3 CCD Camera w/ AO':
        if temp <= -19.3:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3500, 500:3500]) - np.mean(
                    get_fits_data(bias7))
        elif -19.2 < temp <= -14.3:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3500, 500:3500]) - np.mean(
                    get_fits_data(bias8))
        else:
            mean_sub = np.mean(
                get_fits_data(filename)[500:3500, 500:3500]) - np.mean(
                    get_fits_data(bias9))

    return (mean_sub)
Esempio n. 3
0
def ins_temp(filename):
    header = get_fits_header(filename)
    instru = [header['INSTRUME']]
    if 'CCD-TEMP' in header:
        temp = [header['CCD-TEMP']]
    else:
        temp = [' ']

    return(instru, temp)
Esempio n. 4
0
 def __init__(self, filenames, fast=FAST):
     filenames = sorted(filenames)
     self.filenames = filenames
     lfil = len(filenames)
     log.info(f"dfits {lfil} files. It can take some seconds.")
     self.heads = [get_fits_header(f, fast=False) for f in filenames]
     for i, p in enumerate(filenames):
         self.heads[i]["FULLPATH"] = filenames[i]
     self.data = self.heads
Esempio n. 5
0
def instrument_temperature_time_dateobs(filename):
    header = get_fits_header(filename)
    instru = [header['INSTRUME']]
    if 'CCD-TEMP' in header:
        temp = [header['CCD-TEMP']]
    else:
        temp = [' ']
    time = [header['EXPTIME']]
    date_obs = header['DATE-OBS']
    return (instru, temp, time, date_obs)
Esempio n. 6
0
def tab(filenames):
    filenames = sorted(filenames)
    time_table = Table()
    counts_unique_table = Table()
    for filename in filenames:
        header = get_fits_header(filename)
        counts_unique = counts(filename)
        time = header['EXPTIME']
        time_table.add_column([time], rename_duplicate = True)
        counts_unique_table.add_column([counts_unique], rename_duplicate = True)
    return(time_table, counts_unique_table)
Esempio n. 7
0
def signal_noise(filenames, my_instr="Mexman"):
    for filename in filenames:
        catalog = load_catalog(filename)
        apers = set_apertures(catalog)
        data = get_fits_data(filename)
        header = get_fits_header(filename)
        wcs = WCS(header)
        phot_table = do_photometry(data, apers=apers, wcs=wcs)
        pixar = apers[0].to_pixel(wcs)
        pixan = apers[1].to_pixel(wcs)
        bkg_mean = phot_table['aperture_sum_1'] / pixan.area
        
        R_star = phot_table['residual_aperture_sum']     
        R_sky = bkg_mean * pixar.area
        n_pix_aperture = pixan.area
        
        with open('instruments.json') as jfile:
            instrument_dict = json.load(jfile)

        instrument = instrument_dict[my_instr]

        # if header['INSTRUME'] == 'Mexman':
        #     key = instrument_dict['Mexman']
        # elif header['INSTRUME'] == 'DFOSC_FASU':
        #     key = instrument_dict['DFOSC_FASU']
        # elif header['INSTRUME'] == 'STL-11000 3 CCD Camera':
        #     key = instrument_dict['STL-11000 3 CCD Camera']
        # else:
        #     log.warning('INSTRUMENT NOT FOUND ')
            
        gain = instrument['gain']
        RON = instrument['ron']
        if gain is None:
            log.warning(f'Gain not found for {instrument}')
        if ron is None:
            log.warning(f'Ron not found for {instrument}')
            
        signal_noise = (R_star)/[(R_star + R_sky + RON + (gain/2)**2)**1/2]
        # for now I'm neglecting Dark Current effects 
        
    return(signal_noise)
         
Esempio n. 8
0
flats = glob.glob("gj3470/*/flat/*.fit*")
keys = ['ccdxbin', 'filter']
mbias = 'arp.MBIAS.ccdxbin=2.fits'
master_flat(flats, keys, mbias=mbias)

obj_all = glob.glob("gj3470/*/object/*.fit*")
objects = Dfits(obj_all, fast=True).fitsort(['object']).unique_names_for(
    ('GJ3470', ))
mflat = "arp.MFLAT.ccdxbin=2.filter=vacio+V3.fits"

correct_image(objects, keys, mbias=mbias, mflat=mflat, new_header="Mexman")

solver("*CLEAN*fits")

solved = sorted(glob.glob("solved/*CLEAN*.new"))
datas = [get_fits_header(f, fast=True)["MJD-OBS"] for f in solved]
airmass = [get_fits_header(f, fast=True)["AIRMASS"] for f in solved]
tables = apphot(solved, r=6, r_in=15.5, r_out=25)

tabellone = np.array([tables[0][k] for k in tables[0].keys()])
tabellone = np.insert(tabellone, 0, [datas, airmass], axis=1)
errorone = np.array([tables[1][k] for k in tables[1].keys()])
ascii.write(np.concatenate((tabellone, errorone), axis=1),
            "tabellone.txt",
            overwrite=True)

#plot f u ($1-58800):(-2.5*log10($5/($4+$14+$16))) w lp pt 7, g u ($2-2458800):($8+2.5*log10(10**(-$10*.4)+10**(-$12*.4)+10**(-$13*0.4) ))-0.000 w lp pt 7 lc rgb "orange"

####################################
# Main
####################################
Esempio n. 9
0
def apphot(filenames,
           reference=0,
           display=DISPLAY,
           r=False,
           r_in=False,
           r_out=False):
    '''
    Perform the aperture photometry
    '''

    filenames = sorted(filenames)

    header0 = get_fits_header(filenames[reference])
    wcs0 = WCS(header0)

    catalog = load_catalog(wcs=wcs0)
    if r and r_in and r_out:
        apers = set_apertures(catalog, r=r, r_in=r_in, r_out=r_out)
    else:
        apers = set_apertures(catalog)

    tables = Table()
    err_table = Table()

    if display:
        d = pyds9.DS9("ds9")

    for filename in filenames:
        header = get_fits_header(filename)
        data = get_fits_data(filename)
        wcs = WCS(header)

        #catalog = load_catalog(wcs=wcs)
        #apers = set_apertures(catalog, r=r, r_in=r_in, r_out=r_out)

        ron, gain, dark_current = ron_gain_dark()

        phot_table = do_photometry(data,
                                   apers,
                                   wcs,
                                   ron,
                                   gain,
                                   dark_current,
                                   obstime=header['MJD-OBS'])
        # phot_table = do_photometry(data, apers, wcs, obstime=header['MJD-OBS'],
        #                            flux=False, zero_point_flux=1)

        # positions = SkyCoord(catalog['ra'], catalog['dec'],
        #                      frame='icrs',
        #                      unit=(u.deg, u.deg))

        if display:
            d.set(f"file {filename}")

            # for i,pos in enumerate(positions):
            #     p = pos.to_pixel(wcs)
            #     circ = f'circle({p[0]}, {p[1]}, {10})'
            #     d.set("regions", circ)
            #     d.set("region", f"text {p[0]} {p[1]} "+"{"+str(i)+"}")

            for i, aper in enumerate(apers[0].to_pixel(wcs)):
                circ = f'circle({aper.positions[0]}, {aper.positions[1]}, {aper.r})'
                d.set("regions", circ)
                d.set(
                    "region",
                    f"text {aper.positions[0]}, {aper.positions[1]} " + "{" +
                    str(i) + "}")

            for aper in apers[1].to_pixel(wcs):
                circ = f'circle({aper.positions[0]}, {aper.positions[1]}, {aper.r_in})'
                d.set("regions", circ)
                circ = f'circle({aper.positions[0]}, {aper.positions[1]}, {aper.r_out})'
                d.set("regions", circ)

        tables.add_column(phot_table["residual_aperture_sum"],
                          rename_duplicate=True)
        err_table.add_column(phot_table["error"], rename_duplicate=True)
        log.info(f"Done {filename}")

    return tables, err_table
Esempio n. 10
0
 def filename(self, value):
     '''
     Setter for filename
     '''
     self._filename = value
     self.head = get_fits_header(value)