Esempio n. 1
0
 def __init__(self, data_header, cube_header, ng=1, **kwargs):
     self.data_header = data_header
     self.map_header = cube_header
     xout = dataarray_from_header(data_header)
     xout[:] = 0
     xin = fa.fitsarray_from_header(cube_header)
     xin.header = dict(xin.header)
     xin[:] = 0
     self.xin = xin
     self.xout = xout
     def matvec(x):
         y = dataarray_from_header(data_header)
         y[:] = 0
         for i in xrange(ng):
             yi = y[..., i::ng]
             yi.header = y.header[i::ng]
             projector4d(yi, x, **kwargs)
         del yi
         return y
     def rmatvec(x):
         y = fa.fitsarray_from_header(cube_header)
         y[:] = 0
         for i in xrange(ng):
             xi = x[..., i::ng]
             xi.header = xi.header[i::ng]
             backprojector4d(xi, y, **kwargs)
         del xi
         return y
     lo.NDSOperator.__init__(self, xin=xin, xout=xout, matvec=matvec, rmatvec=rmatvec, dtype=xout.dtype)
Esempio n. 2
0
 def __init__(self, data_header, cube_header, **kwargs):
     self.data_header = data_header
     self.map_header = dict(cube_header)
     xin = fa.fitsarray_from_header(cube_header)
     xin.header = dict(xin.header)
     xin[:] = 0
     xout = dataarray_from_header(data_header)
     xout[:] = 0
     self.xin = xin
     self.xout = xout
     shapein = xin.shape
     shapeout = xout.shape
     def matvec(x):
         x = fa.InfoArray(data=x, header=dict(cube_header))
         y = xout
         y[:] = 0.
         projector(y, x, **kwargs)
         return y
     def rmatvec(x):
         x = fa.InfoArray(data=x, header=data_header)
         y = xin
         y[:] = 0.
         backprojector(x, y, **kwargs)
         return y
     lo.NDSOperator.__init__(self, shapein, shapeout, xin=xin, xout=xout,
                            matvec=matvec, rmatvec=rmatvec, dtype=xout.dtype)
Esempio n. 3
0
 def rmatvec(x):
     y = fa.fitsarray_from_header(cube_header)
     y[:] = 0
     for i in xrange(ng):
         xi = x[..., i::ng]
         xi.header = xi.header[i::ng]
         backprojector4d(xi, y, **kwargs)
     del xi
     return y
Esempio n. 4
0
def centered_image(pshape, shape, fill=0., dtype=np.float64):
    """
    Generate a centered cubic map.

    Arguments
    ---------
    pshape : physical shape
    shape : shape in pixels

    Returns
    -------
    cube: 3d FitsArray
    """
    header = centered_image_header(pshape, shape, dtype=dtype)
    im = fa.fitsarray_from_header(header)
    im[:] = fill
    return im
Esempio n. 5
0
def centered_image(pshape, shape, fill=0., dtype=np.float64):
    """
    Generate a centered cubic map.

    Arguments
    ---------
    pshape : physical shape
    shape : shape in pixels

    Returns
    -------
    cube: 3d FitsArray
    """
    header = centered_image_header(pshape, shape, dtype=dtype)
    im = fa.fitsarray_from_header(header)
    im[:] = fill
    return im
Esempio n. 6
0
def centered_cubic_map(pshape, shape, fill=0., dtype=np.float64):
    """
    Generate a centered cubic map header

    Arguments
    ---------
    pshape : physical shape
    shape : shape in pixels

    Output
    ------
    cube: 3d FitsArray
    """
    header = centered_cubic_map_header(pshape, shape, dtype=dtype)
    # generate cube and exit
    map = fa.fitsarray_from_header(header)
    map = fa.InfoArray(data=map, header=dict(header))
    map[:] = fill
    return map
Esempio n. 7
0
def centered_cubic_map(pshape, shape, fill=0., dtype=np.float64):
    """
    Generate a centered cubic map header

    Arguments
    ---------
    pshape : physical shape
    shape : shape in pixels

    Output
    ------
    cube: 3d FitsArray
    """
    header = centered_cubic_map_header(pshape, shape, dtype=dtype)
    # generate cube and exit
    map = fa.fitsarray_from_header(header)
    map = fa.InfoArray(data=map, header=dict(header))
    map[:] = fill
    return map
Esempio n. 8
0
def siddon_lo(data_header, cube_header, obstacle=None):
    """
    A linear operator performing projection and backprojection using
    Siddon.
    """
    data = dataarray_from_header(data_header)
    data[:] = 0
    cube = fa.fitsarray_from_header(cube_header)
    cube[:] = 0
    def matvec(x):
        y = dataarray_from_header(data_header)
        y[:] = 0
        projector(y, x, obstacle=obstacle)
        return y
    def rmatvec(x):
        y = fa.fitsarray_from_header(cube_header)
        y[:] = 0
        backprojector(x, y, obstacle=obstacle)
        return y
    return lo.ndsubclass(cube, data, matvec=matvec, rmatvec=rmatvec, dtype=data.dtype)
Esempio n. 9
0
"""
Regroup functions to easily perform simulations.
"""
import copy
import numpy as np
import siddon
import fitsarray as fa

default_image_dict = {'NAXIS':2, 'NAXIS1':1, 'NAXIS2':1,
                      'BITPIX':-64, 'SIMPLE':True,
                      'CRPIX1':0.5, 'CRPIX2':0.5, 'CDELT1':1., 'CDELT2':1.,
                      'LON':0., 'LAT':0., 'ROL':0.,
                      'D':1., 'M1':1., 'M2':0., 'M3':0.}
image_keys = default_image_dict.keys()
default_image = fa.fitsarray_from_header(default_image_dict)

default_object_dict = {'NAXIS':3, 'NAXIS1':1, 'NAXIS2':1, 'NAXIS3':1,
                       'BITPIX':-64, 'SIMPLE':True,
                       'CRPIX1':0.5, 'CRPIX2':0.5, 'CRPIX3':0.5,
                       'CRVAL1':0., 'CRVAL2':0., 'CRVAL3':0.,
                       'CDELT1':1., 'CDELT2':1., 'CDELT3':1., }
object_keys = default_object_dict.keys()
default_object = fa.fitsarray_from_header(default_object_dict)

class Image(fa.InfoArray):
    """
    A subclass of FitsArray with mandatory keywords defining an image
    """
    def __new__(subtype, shape, data=None, dtype=float, buffer=None, offset=0,
                strides=None, order=None, header=None):
        if header is None:
Esempio n. 10
0
def make_object(*kargs):
    import fitsarray as fa
    header = make_object_header(*kargs)
    return fa.fitsarray_from_header(header)
Esempio n. 11
0
def make_object(*kargs):
    import fitsarray as fa
    header = make_object_header(*kargs)
    return fa.fitsarray_from_header(header)
Esempio n. 12
0
    'BITPIX': -64,
    'SIMPLE': True,
    'CRPIX1': 0.5,
    'CRPIX2': 0.5,
    'CDELT1': 1.,
    'CDELT2': 1.,
    'LON': 0.,
    'LAT': 0.,
    'ROL': 0.,
    'D': 1.,
    'M1': 1.,
    'M2': 0.,
    'M3': 0.
}
image_keys = default_image_dict.keys()
default_image = fa.fitsarray_from_header(default_image_dict)

default_object_dict = {
    'NAXIS': 3,
    'NAXIS1': 1,
    'NAXIS2': 1,
    'NAXIS3': 1,
    'BITPIX': -64,
    'SIMPLE': True,
    'CRPIX1': 0.5,
    'CRPIX2': 0.5,
    'CRPIX3': 0.5,
    'CRVAL1': 0.,
    'CRVAL2': 0.,
    'CRVAL3': 0.,
    'CDELT1': 1.,
Esempio n. 13
0
 def rmatvec(x):
     y = fa.fitsarray_from_header(cube_header)
     y[:] = 0
     backprojector4d(x, y, obstacle=obstacle)
     return y